版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06有理数的乘方(综合题)知识互联网知识互联网易错点拨易错点拨知识点1:有理数的乘方定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:.在中,叫做底数,n叫做指数.细节剖析:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.知识点2:乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.细节剖析:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.知识点3:有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.细节剖析:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.易错题专训易错题专训一.选择题1.(2022•二道区校级二模)2022年我国高校预计毕业1076万人,创历史新高.“1076万”这个数用科学记数法表示为()A.1.076×103 B.0.1076×108 C.1.076×107 D.10.76×106【易错点分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【规范解答】解:1076万=10760000=1.076×107.故选:C.【考察注意点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2022•碑林区模拟)截至2022年2月,中国已建设开通了150.6万个5G基站,建成全球技术领先、规模最大、用户最多的5G网络.数据150.6万用科学记数法表示为()A.150.6×104 B.15.06×105 C.1.506×106 D.1.506×107【易错点分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【规范解答】解:150.6万=1506000=1.506×106.故选:C.【考察注意点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2022•思明区校级二模)爱国主义题材的影片《长津湖》上映后备受广大观众喜爱,票房一路攀升,上映一周票房就高达326000000元.其中数据326000000用科学记数法表示为a×10n的形式,其中n的值为()A.6 B.7 C.8 D.9【易错点分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【规范解答】解:326000000=3.26×108,所以数据326000000用科学记数法表示为a×10n的形式,其中n的值为8.故选:C.【考察注意点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2021春•浦江县期末)现有价格相同的6种不同商品,从今天开始每天分别降价10%或涨价10%,若干天后,这6种商品的价格互不相同,设最高价格和最低价格的比值为r,则r的最小值为()A.()3 B.()4 C.()5 D.()6【易错点分析】设6种商品最初的价格为a,则n天(其中有m天降价,n﹣m天涨价)后商品的价格为a(1﹣10%)m(1+10)n﹣m=()k()n﹣ma,然后分别表示出6中商品的价格,然后根据题意列式计算.【规范解答】解:设6种商品最初的价格为a,则n天(其中有m天降价,n﹣m天涨价)后商品的价格为a(1﹣10%)m(1+10)n﹣m=()m()n﹣ma,∴6种商品的价格可表示为:①()m()n﹣ma,②()m+1()n﹣m﹣1a,③()m+2()n﹣m﹣2a,④()m+3()n﹣m﹣3a,⑤()m+4()n﹣m﹣4a,⑥()m+5()n﹣m﹣5a,设最高价格和最低价格的比值为r,∴r的最小值为,故选:C.【考察注意点】本题考查有理数乘方的应用,理解题意能够列出六种商品的价格是解题关键.5.(2018•西湖区校级二模)对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或 B.2或﹣3 C.2 D.﹣3【易错点分析】解法一:本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.解法二:根据三个数平均值等于三个数的最大值,可得三个数相等,据此可解.【规范解答】解:解法一:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;解法二:∵M{4,x2,x+2}=max{4,x2,x+2},∴4=x2=x+2,解得x=2.综上,故选:C.【考察注意点】本题考查了算术平均数的计算及定义新运算,结合选择题的特点,采用验证加排除的方法来求解是本题解答的关键.6.(2017秋•永泰县期末)已知a,b,c是有理数,且a+b+c=0,abc(乘积)是负数,则的值是()A.3 B.﹣3 C.1 D.﹣1【易错点分析】因为a+b+c=0,abc(乘积)是负数,则这三个数中只能有一个负数,另两个为正数.把a+b+c=0变形代入代数式,求值.【规范解答】解:由题意知,a,b,c中只能有一个负数,另两个为正数,不妨设a<0,b>0,c>0.由a+b+c=0得出:a+b=﹣c,b+c=﹣a,a+c=﹣b,代入代数式,原式==1﹣1﹣1=﹣1.故选:D.【考察注意点】注意分析条件,得出这三个数中只能有一个负数,另两个为正数是化简的关键.7.(2017秋•会同县校级期中)规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.关于除方,下列说法错误的是()A.任何非零数的圈2次方都等于1 B.对于任何正整数n,1ⓝ=1 C.3④=4③ D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【易错点分析】根据定义依次判定即可.【规范解答】解:A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;所以选项B正确;C、3④=3÷3÷3÷3=,4③=4÷4÷4=,则3④≠4③;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;本题选择说法错误的,故选:C.【考察注意点】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.二.填空题8.(2022•南岗区校级模拟)在“百度”搜索引擎中输入“禹鑫”,能搜索到与之相关的结果个数约为4705000,这个数用科学记数法表示为4.705×106.【易错点分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【规范解答】解:4705000这个数用科学记数法表示为4.705×106.故答案为:4.705×106.【考察注意点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.9.(2022•襄都区校级开学)(1)已知x+y=6,xy=8,则代数式(x﹣y)2的值为4;(2)若|x+y|+(y﹣2)2=0,则xy的值是4.【易错点分析】(1)利用完全平方公式首先求出(x+y)2=x2+y2+2xy=36,进而得出x2+y2=20,即可得出答案;(2)根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【规范解答】解:(1)∵x+y=6,∴(x+y)2=x2+y2+2xy=36,∵xy=8,∴x2+y2+2×8=36,∴x2+y2=20,∵(x﹣y)2=x2+y2﹣2xy=20﹣16=4.(2)∵|x+y|+(y﹣2)2=0,∴x+y=0,y﹣2=0,∴x=﹣2,y=2,∴xy=(﹣2)2=4.故答案是:4,4.【考察注意点】本题考查了完全平方公式和非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(2022•鞍山)教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为4.43×107.【易错点分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【规范解答】解:44300000=4.43×107.故答案为:4.43×107.【考察注意点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.11.(2022秋•射阳县月考)计算|﹣32﹣2|﹣|﹣23+8|=11.【易错点分析】先算乘方,再化简绝对值,进行计算即可解答.【规范解答】解:|﹣32﹣2|﹣|﹣23+8|=|﹣9﹣2|﹣|﹣8+8|=11﹣0=11,故答案为:11.【考察注意点】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.12.(2021秋•孝感月考)已知a、b为有理数,下列说法:①若a、b互为相反数,则=﹣1;②若|a﹣b|+a﹣b=0,则b>a;③若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的序号是③④.【易错点分析】根据0的相反数是0判断①;对条件进行变形,根据绝对值的性质判断②;根据乘法和加法法则确定a<0,b<0,由负数的绝对值等于它的相反数判断③;通过分类讨论可判断④.【规范解答】解:①若a=b=0,则没有意义,故①错误;②∵|a﹣b|+a﹣b=0,∴|a﹣b|=b﹣a,∴b≥a,故②错误;③∵a+b<0,ab>0,∴a<0,b<0,∴3a+4b<0,∴|3a+4b|=﹣3a﹣4b,故③正确;④若|a|>|b|,∴a和b分三种情况,a和b同号时,假设a=2,b=1或a=﹣2,b=﹣1,则(a+b)•(a﹣b)=3×1=3或(﹣3)×(﹣1)=3>0,a和b异号时,假设a=﹣2,b=1或a=2,b=﹣1,则(a+b)•(a﹣b)=(﹣1)×(﹣3)=3或1×3=3>0,故④正确;故答案为:③④.【考察注意点】本题考查了相反数,绝对值,有理数的加法,减法,乘法,除法,掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0是解题的关键.13.(2021秋•袁州区校级月考)符号“f”表示一种运算,它对一些数运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算f(2014)﹣f()﹣f(2013)=﹣2013.【易错点分析】利用符号“f”的运算方法求解即可.【规范解答】解:由符号“f”运算可得,f(2014)﹣f()﹣f(2013)=2013﹣2014﹣2012=﹣2013,故答案为:﹣2013.【考察注意点】本题主要考查了有理数的混合运算,解题的关键是理解符号“f”的运算方法.14.(2019•黄州区校级模拟)给定两组数,A组为:1,2,…,100;B组为:12,22,…,1002.对于A组中的数x,若有B组中的数y,使x+y也是B组中的数,则称x为“关联数”.那么,A组中这样的关联数有73个.【易错点分析】设y=b2,x+y=a2,1≤b<a≤100,则x=a2﹣b2=(a+b)(a﹣b)≤100,利用(a+b)与(a﹣b)奇偶性相同,且a+b≥(a﹣b)+2,分类讨论即可.【规范解答】解:设y=b2,x+y=a2,1≤b<a≤100则x=a2﹣b2=(a+b)(a﹣b)≤100∵(a+b)与(a﹣b)奇偶性相同,且a+b≥(a﹣b)+2,以下分情况讨论:(1)若a﹣b=1,则3≤a+b≤99为奇数,a+b可取3,5,7,…99共49个;(2)若a﹣b=2,则4≤a+b≤50为偶数,a+b可取4,6,8,…50共24个;其它情况下所得的x值,可归为以上情形.∴x共有:49+24=73个.故答案为:73【考察注意点】本题是以新定义形式出现的数论问题,利用因式分解,再结合奇偶性及分类思想是解题的关键.15.(2019•常德模拟)某电影院的票价是:个人每张6元,每10人一张团体票为40元,学生享受九折优惠,某校1258名学生看电影(教师免票),学校应向电影院至少付4536元钱.【易错点分析】学生有1258人,最经济的方案为买1260个人的团体票,把相关数值代入求解即可.【规范解答】解:学生有1258人,若那8个人买个人票,需付6×8×0.9=43.2,若那8个也买团体票,需付40×0.9=36元,∴买1260人的团体票该付的款为1260÷10×40×0.9=4536(元),故答案为4536.【考察注意点】考查有理数的混合运算,得到最省钱的方案是解决本题的关键.三.解答题16.(2022秋•射阳县月考)计算(1)3×(﹣4)﹣35÷7;(2);(3)(﹣7.3)﹣(﹣6)+|﹣3.3|+1;(4).【易错点分析】(1)先算乘除,后算减法,即可解答;(2)利用乘法分配律,进行计算即可解答;(3)先把有理数的减法转化为加法,再利用加法交换律和结合律进行计算即可解答;(4)先算乘方,再算乘除,后算加减,即可解答.【规范解答】解:(1)3×(﹣4)﹣35÷7=﹣12﹣5=﹣17;(2)=×24﹣×24﹣×24=16﹣6﹣4=6;(3)(﹣7.3)﹣(﹣6)+|﹣3.3|+1=(﹣7.3)+6+3.3+1=[(﹣7.3)+3.3]+(6+1)=﹣4+8=4;(4)=1×﹣×(﹣3)=+=3.【考察注意点】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.(2021秋•开江县期末)小明为一个矩形娱乐场所提供了如下的设计方案,其中半圆形休息区和矩形游泳池以外的地方都是绿地.(1)游泳池和休息区的面积各是多少?(2)绿地的面积是多少?(3)如果这个娱乐场所需要有一半以上的绿地,小明设计的m,n分别是a,b的,当a=70米,b=40米时,他的设计方案符合要求吗?(π取值为3)【易错点分析】(1)根据图形所标字母列式计算;(2)根据绿地面积等于矩形场地面积减去游泳池与休息区的面积列式即可;(3)将a=70米,b=40代入(2)题结果,再和场地面积的比较大小即可.【规范解答】解:(1)由题意可得,游泳池的面积是:mn,休息区的面积是:=,答:游泳池和休息区的面积各是mn和;(2)由题意得,绿地面积是:ab﹣mn﹣,答:绿地的面积是ab﹣mn﹣;(3)由题意得,70×40﹣×﹣≈2800﹣700﹣50×3=2800﹣700﹣150=1950(平方米),∵×70×40=1400<1950,∴他的设计方案符合要求,答:他的设计方案符合要求.【考察注意点】此题考查了根据实际问题列代数式的能力,关键是能准确理解题目间的数量关系.18.(2021秋•岚皋县期末)将如图所示的长为1.5×102cm,宽为1.2×102cm,高为0.8×102cm的大理石运往某地进行建设革命历史博物馆.(1)求每块大理石的体积.(结果用科学记数法表示)(2)如果一列火车总共运送了3×104块大理石,每块大理石约重4×103千克,请问这列火车总共运送了约重多少千克大理石?(结果用科学记数法表示)【易错点分析】(1)根据长方体的体积=长×宽×高,先求出它的体积,再用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数;(2)根据总重量=大理石块数×每块大理石的重量列出代数式,再计算求值并用科学记数法表示即可.【规范解答】解:(1)根据题意,得1.5×102×1.2×102×0.8×102=(1.5×1.2×0.8)×(102×102×102)=1.44×106.答:每块大理石的体积为1.44×106cm3;(2)根据题意,得3×104×4×103=(3×4)×104×103=1.2×108.答:这列火车总共运送了约重1.2×108千克大理石.【考察注意点】本题主要考查了长方体的体积公式,科学记数法的表示方法,及同底数的幂的乘法.解题的关键是明确同底数幂的乘法的运算法则:同底数的幂相乘,底数不变,指数相加.19.(2021秋•吴江区校级月考)观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=﹣.(2)直接写出下列各式的计算结果:=;(3)探究并计算:.【易错点分析】(1)根据已知的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚庆行业前台工作总结
- 定制家具设计师工作要点
- 《美丽的海洋世界》课件
- 购物服务员工作总结
- 前台文员情绪智力提升方案计划
- 《苗木霜害怎么预防》课件
- 2024年广东省汕尾市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年甘肃省嘉峪关市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年四川省雅安市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年云南省楚雄自治州公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 护理给药制度课件
- 基于单片机的火灾报警系统设计
- 培智三年级上册生活语文期末测试卷(A)
- GB/T 13296-2023锅炉、热交换器用不锈钢无缝钢管
- JCT2381-2016 修补砂浆标准
- 新加坡学习汇报
- 人工智能与机器学习基础课程
- 高速公路隧道工程施工方案
- 中国营养科学全书
- 针灸推拿试题(附参考答案)
- 《机械制图》说课课件-画组合体视图的方法和步骤
评论
0/150
提交评论