2024年浙江省台州市温岭市数学九上开学经典模拟试题【含答案】_第1页
2024年浙江省台州市温岭市数学九上开学经典模拟试题【含答案】_第2页
2024年浙江省台州市温岭市数学九上开学经典模拟试题【含答案】_第3页
2024年浙江省台州市温岭市数学九上开学经典模拟试题【含答案】_第4页
2024年浙江省台州市温岭市数学九上开学经典模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年浙江省台州市温岭市数学九上开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是()A.m<n B.m>n C.m+n<o D.m+n>02、(4分)一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.103、(4分)方程x2+x﹣1=0的一个根是()A.1﹣5 B.1-52 C.﹣1+54、(4分)若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和85、(4分)若函数的解析式为y=,则当x=2时对应的函数值是()A.4 B.3 C.2 D.06、(4分)小勇投标训练4次的成绩分别是(单位:环)9,9,x,1.已知这组数据的众数和平均数相等,则这组数据中x是(

)A.7B.1C.9D.107、(4分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的面积比为()A.1:2 B.1:3 C.1:4 D.1:168、(4分)正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.10、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.11、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为_____________.12、(4分)观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.13、(4分)若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.15、(8分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.16、(8分)因式分解:17、(10分)小亮步行上山游玩,设小亮出发xmin加后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系,(1)小亮行走的总路程是____________m,他途中休息了____________min.(2)当5080时,求y与x的函数关系式.18、(10分)如图,△ABC的面积为63,D是BC上的一点,且BD:BC=2:3,DE∥AC交AB于点E,延长DE到F,使FE:ED=2:1.连结CF交AB点于G.(1)求△BDE的面积;(2)求的值;(3)求△ACG的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.20、(4分)如图,在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F,若EF=EC,则∠BCF的度数为______.21、(4分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。

22、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.23、(4分)设的整数部分为,小数部分为,则的值等于________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.(1)若,试求的值;(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.25、(10分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.26、(12分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.(1)试判断四边形AEDF的形状,并证明;(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据反比例点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,可以判断点P和点Q所在的象限,进而判断m和n的大小.【详解】解:∵点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,∴点P在第二象限,点Q在第四象限,∴m>0>n;故选:B.本题主要考查反比例函数的性质,关键在于根据反比例函数的k值判断反比例函数的图象分布.2、B【解析】

根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【详解】解:n=360°÷45°=1.故选:B.本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.3、D【解析】

利用求根公式解方程,然后对各选项进行判断.【详解】∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=12﹣4×(﹣1)=5,则x=-1±5所以x1=-1+52,x2故选:D.本题考查了解一元二次方程﹣公式法,解题关键在于掌握运算法则.4、C【解析】

平行四边形的长为7的一边,与对角线的交点,构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.设两条对角线的长度分别是x、y,即三角形的另两边分别是x、y,那么得到不等式组,解得,所以符合条件的对角线只有14,1.【详解】解:如图,▱ABCD中,AB=7,设两条对角线AC、BD的长分别是x,y.∵四边形ABCD为平行四边形,∴OA=OC,OB=OD∴OA=x,OB=y,∴在△AOB中,,即:,解得:,将四个选项分别代入方程组中,只有C选项满足.故选:C.本题考查平行四边形的性质以及三角形的三边关系定理,根据三角形的三边关系,确定出对角线的长度范围是解题的关键,有一定的难度.5、A【解析】

把x=2代入函数解析式y=,即可求出答案.【详解】把x=2代入函数解析式y=得,故选A.本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.6、C【解析】【分析】根据题意可知,x是9,不可能是1.【详解】因为这组数据的众数和平均数相等,则这组数据中x是9.故选:C【点睛】本题考核知识点:众数和平均数.解题关键点:理解众数和平均数的定义.7、D【解析】

直接根据相似三角形的性质即可得出结论.【详解】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=(14)2=1:16故答案为:D本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.8、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.10、80.4【解析】

频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.【详解】解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.故答案为:(1).8(2).0.4本题考查了频数与频率,依据两者的定义即可解题.11、【解析】

根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出∠ADE=∠AED=55°,从而得到∠EDC【详解】∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB∵AD=AB=AE,∴∠AED=∠ADE∵AD∥BC,∴∠DAE=∠AEB=70°∴∠ADE=∠AED=(180°-∠DAE)÷2=55°∴∠EDC=70°-∠ADE=70°-55°=15°本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点12、【解析】

观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.13、【解析】

设这个一次函数的表达式y=-1x+b,把代入即可.【详解】设这个一次函数的表达式y=-1x+b,把代入,得-4+b=-1,∴b=3,∴.故答案为:.本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.三、解答题(本大题共5个小题,共48分)14、见解析【解析】分析:利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.详解:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE.∵DF⊥AE,∴∠AFD=∠B=90°.在△ABE和△DFA中,∵∴△ABE≌△DFA,∴AB=DF.点睛:本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.15、(1)平行四边形;(2)见解析【解析】

(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.故答案为平行四边形;(2)证明:如图2中,连接,.∵,∴即,在和中,,∴,∴∵点,,分别为边,,的中点,∴,,由(1)可知,四边形是平行四边形,∴四边形是菱形.如图设与交于点.与交于点,与交于点.∵,∴,∵,∴∵,,∴,∵四边形是菱形,∴四边形是正方形.本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.16、(x+y-1)(x+y+1)【解析】

将前三项先利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.【详解】解:(x2+y2+2xy)-1

=(x+y)2-1

=(x+y-1)(x+y+1).此题主要考查了分组分解法以及公式法分解因式,熟练利用公式法分解因式是解题关键.17、(1)3600,20;(2)y=55x-800.【解析】

(1)由函数图象可以直接得出小亮行走的路程是3600米,途中休息了20分钟;

(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;【详解】解:(1)由函数图象,得

小亮行走的总路程是3600米,途中休息了50-30=20(分钟).

故答案为:3600,20;(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由题意,得,

解得:∴当50≤x≤80时,y与x的函数关系式为:y=55x-800;本题考查了一次函数的应用,解决此类题目最关键的地方是经过认真审题,从中整理出一次函数模型,用一次函数的知识解决此类问题.18、(1)△BDE的面积是28;(2);(3)9【解析】

(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;(2)若要求的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S=14,进而求出四边形ACDE的面积是35和S=21,利用相似三角【详解】(1)∵DE∥AC,∴△BDE∽△BCA,∴,∵BD:BC=2:3,∴,∵△ABC的面积为63,∴△BDE的面积是28;(2)∵DE∥AC,∴,∴AC=ED,∵FE:ED=2:1,∴EF=2ED,∴;(3)∵△BDE的面积是28,∴S=14,∴四边形ACDE的面积是35,∴S=21,∵DE∥AC,∴△GEF∽△GAC,∴,∴S=×21=9.此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形是正方形,∴,,.在中,为的中点,∴.∵的周长为18,,∴,∴.在中,根据勾股定理,得,∴,∴.在中,∵,为的中点,又∵为的中位线,∴.故答案为:.本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.20、67.5【解析】

由正方形的性质得到∠BDC=∠CBD=45°,求得DF=EF,∠FED=45°.根据等腰三角形的性质得到∠EFC=∠ECF,于是得到结论.【详解】解:∵四边形ABCD是正方形,

∴∠BDC=∠CBD=45°,

∵EF⊥BD,

∴△DFE是等腰直角三角形,

∴DF=EF,∠FED=45°,

∵EF=EC,

∴∠EFC=∠ECF,

∵∠FED=∠EFC+∠ECF,

∴∠ECF=22.5°,

∵∠BCD=90°,

∴∠BCF=67.5°,

故答案为:67.5°.本题考查了正方形的性质,等腰直角三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.21、5或1.【解析】

先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.【详解】证明:∵∠A=∠ABC=90°,

∴BC∥AD,

∴∠CBE=∠DFE,

在△BEC与△FED中,∴△BEC≌△FED,

∴BE=FE,

又∵E是边CD的中点,

∴CE=DE,

∴四边形BDFC是平行四边形;(1)BC=BD=5时,由勾股定理得,AB===,

所以,四边形BDFC的面积=5×=5;

(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,

所以,AG=BC=5,

所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,

所以,四边形BDFC的面积=4×5=1;

(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;

综上所述,四边形BDFC的面积是5或1.故答案为:5或1.本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22、4米【解析】

过点C作CE⊥AB于点E,则人离墙的距离为CE,在Rt△ACE中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,过点C作CE⊥AB于点E,则人离墙的距离为CE,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A的距离AC=5米时,灯发光.此时,在Rt△ACE中,根据勾股定理可得,CE2=AC2-AE2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.23、2-【解析】

根据题意先求出a和b,然后代入化简求值即可.【详解】解:∵2<<3,∴a=2,b=﹣2,∴.故答案为2﹣.二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)【解析】

(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.【详解】(1)∵点N的坐标为(2,0),CN⊥x轴,且,∴点C的坐标为(2,).∵点C在反比例函数的图象上,∴n=2×=1.(2)四边形ABCD为菱形,理由如下:当n=2时,.当x=2时,,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,).当y=时,,解得:,∴点B的坐标为,点D的坐标为,∴,∴BP=DP.又∵AP=CP,AC⊥BD,∴四边形ABCD为菱形.(3)∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,∴点P的坐标为.同理,点B的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论