版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省莆田二十五中高二上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④2.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.3.若函数,当时,平均变化率为3,则等于()A. B.2C.3 D.14.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.5.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−36.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.7.设aR,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知数列满足,,,前项和()A. B.C. D.9.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.10.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.11.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得12.命题,,则为()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.给定点、、与点,求点到平面的距离______.14.点到直线的距离为______.15.空间四边形中,,,,,,,则与所成角的余弦值等于___________16.直线与曲线有且仅有一个公共点.则b的取值范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,动点与连线的斜率之积.(1)设动点的轨迹为,求的方程;(2)若是上关于轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.18.(12分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值19.(12分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.20.(12分)已知抛物线C的方程是.(1)求C的焦点坐标和准线方程;(2)直线l过抛物线C的焦点且倾斜角为,与抛物线C的交点为A,B,求的长度.21.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率22.(10分)已知等差数列的公差为2,且,,成等比数列.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B2、C【解析】分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键3、B【解析】直接利用平均变化率的公式求解.【详解】解:由题得.故选:B4、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B5、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B6、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.7、A【解析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系8、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C9、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D10、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题11、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B12、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出平面的法向量,再利用点到面的距离公式计算即可.【详解】设平面的法向量为,点到平面的距离为,,,即,令,得故答案为:.14、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.15、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.16、或.【解析】根据曲线方程得曲线的轨迹是个半圆,数形结合分析得两种情况:(1)直线与半圆相切有一个交点;(2)直线与半圆相交于一个点,综合两种情况可得答案.【详解】由曲线,可得,表示以原点为圆心,半径为的右半圆,是倾斜角为的直线与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据,所以,结合图像可得;(2)直线与半圆的上半部分相交于一个交点,由图可知.故答案为:或.【点睛】方法点睛:处理直线与圆位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法;如果或有限制,需要数形结合进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)以为直径的圆过定点,定点坐标为和.【解析】(1)设动点的坐标,利用斜率坐标公式结合已知列式即可作答.(2)设上任意一点,求出点M,N的坐标,再求出以为直径的圆的方程即可分析作答.【小问1详解】设点,则直线PA,PB的斜率分别为:,,依题意,,化简整理得:,所以的方程是:.【小问2详解】由(1)知,令是上任意一点,则点,直线:,则点,直线:,则点,以MN为直径的圆上任意一点,当点Q与M,N都不重合时,,有,当点Q与M,N之一重合时,也成立,因此,以MN为直径的圆的方程为:,化简整理得:,而,即,则以MN为直径的圆的方程化为:,显然当时,恒有,即圆恒过两个定点和,所以以为直径的圆过定点,定点坐标为和.【点睛】知识点睛:以点为直径两个端点的圆的方程是:.18、(1)证明见解析(2)【解析】(1)利用空间向量求出空间直线的向量积,即可证明两直线垂直.(2)利用空间向量求直线与平面所成空间角的正弦就是就出平面的法向量与直线的方向向量之间夹角的余弦即可.【小问1详解】如图,以为坐标原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,因为,,所以,即;【小问2详解】设平面的法向量为因为,由,得,令,则所以平面的一个法向量为,又所以故直线与平面所成角的正弦值为19、(1)证明见解析.(2)2-.【解析】(1)根据递推公式,得到,推出,即可证明数列是等比数列;(2)先由(1)求出,即bn=,再错位相减法,即可求出数列的和.【小问1详解】(1)证明:因为an+1=,所以==+,所以-=-=,又a1-≠0,所以数列为以-=为首项,为公比的等比数列.【小问2详解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.20、(1)焦点为,准线方程:(2)【解析】(1)抛物线的标准方程为,焦点在轴上,开口向右,,即可求出抛物线的焦点坐标和准线方程;(2)现根据题意给出直线的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可【小问1详解】(1)抛物线的标准方程是,焦点在轴上,开口向右,,∴,∴焦点为,准线方程:.【小问2详解】∵直线l过抛物线C的焦点且倾斜角为,,∴直线L的方程为,代入抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鄂尔多斯市党校图书馆纸质文献资源查询平台使用说明教学课件
- 公文办理规范与勘误
- 《肠内肠外营养概述》课件
- 这个撞色年终总结
- 国际会议中心木地板翻新施工合同
- 电影院防疫承诺书
- 中药库房防鼠措施
- 舞台设备材料招投标模板
- 婚庆设备租赁协议书
- 乡村安全:枪支弹药管理办法
- 工业自动化设备维护保养指南
- 装饰工程施工与其他专业协调、配合措施配合方案
- 北师大版生物八年级上册 第19章 第3节 植物的生殖方式(教案)
- 《中外历史纲要上》第16课国家出路的探索与列强侵略的加剧 教案
- 11《大家排好队》教学设计-2024-2025学年道德与法治二年级上册统编版
- 校园生活(2023年北京中考语文试卷散文阅读题及答案)
- 医患沟通学智慧树知到答案2024年温州医科大学仁济学院
- 2024数智化绿色低碳评价管理体系
- (新版)婴幼儿发展引导员(高级)技能鉴定理论试题库资料(含答案)
- 枸杞知识简介
- 中国式现代化为主题的论文3000字(1) (1)全文
评论
0/150
提交评论