版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省兖州一中2025届高一数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.2.已知,求的值()A. B.C. D.3.已知是第二象限角,且,则()A. B.C. D.4.设函数f(x)=若,则实数的取值范围是()A.B.C.D.5.已知命题,;命题,.若,都是假命题,则实数的取值范围为()A. B.C.或 D.6.已知集合,则=A. B.C. D.7.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.118.将函数图象向右平移个单位得到函数的图象,已知的图象关于原点对称,则的最小正值为()A.2 B.3C.4 D.69.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的最大值是()A. B.C. D.10.已知角的终边经过点,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________12.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________13.已知,且,写出一个满足条件的的值:______.14.已知函数,的值域为,则实数的取值范围为__________.15.函数定义域是____________16.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.18.已知函数的最小正周期为(1)求当为偶函数时的值;(2)若的图象过点,求的单调递增区间19.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围20.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.21.已知函数的最小值为1.(1)求的值;(2)求函数的最小正周期和单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C2、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A3、B【解析】先由求出,再结合是第二象限角,求即可.【详解】∵∴,∵是第二象限角,∴,∴,故A,C,D错,B对,故选:B.4、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.5、B【解析】写出命题p,q的否定命题,由题意得否定命题为真命题,解不等式,即可得答案.【详解】因为命题p为假命题,则命题p的否定为真命题,即:为真命题,解得,同理命题q为假命题,则命题q的否定为真命题,即为真命题,所以,解得或,综上:,故选:B【点睛】本题考查命题的否定,存在量词命题与全程量词命题的否定关系,考查分析理解,推理判断的能力,属基础题.6、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.7、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C8、B【解析】根据图象平移求出g(x)解析式,g(x)为奇函数,则g(0)=0,据此即可计算ω的取值.【详解】根据已知,可得,∵的图象关于原点对称,所以,从而,Z,所以,其最小正值为3,此时故选:B9、A【解析】分别求得,,,,,,,时,的最小值,作出的简图,因为,解不等式可得所求范围【详解】解:因为,所以,当时,的最小值为;当时,,,由知,,所以此时,其最小值为;同理,当,时,,其最小值为;当,时,的最小值为;作出如简图,因为,要使,则有解得或,要使对任意,都有,则实数的取值范围是故选:A10、C【解析】因为点在单位圆上,又在角的终边上,所以;则;故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:12、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时13、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:014、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:15、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域16、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题意,可得∴∴即,∴AM⊥PM.(II)设,且平面PAM,则,即∴,取,得;取,显然平面ABCD,∴,结合图形可知,二面角P-AM-D为45°.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1);(2).【解析】(1)由为偶函数,求出的值,结合的范围,即可求解;(2)由函数的周期求出值,将点代入解析式,结合的范围,求出,根据正弦函数的单调递增区间,整体代换,即可求出结论.【详解】(1)当为偶函数时,,;(2)函数的最小正周期为,,当时,,将点代入得,,,单调递增需满足,,,所以单调递增是;当时,,将点代入得,,的值不存在,综上,的单调递增区间.【点睛】本题考查函数的性质,利用三角函数值求角,要注意角的范围,考查计算求解能力,不要忽略的正负分类讨论,是本题的易错点,属于中档题.19、(1)(2)【解析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.20、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务管理课件 项目4 财务控制
- 春愈·戴埠理想生活节策划案
- 高尔基海燕课件
- 促销活动总结范文(30篇)-1
- 量词劳动合同法
- 房屋租赁转让合同的意思
- 合同审批组组职责
- 6.4.1建设工程监理人的索赔管理-学习情境六建设工程索24课件讲解
- 《东风日产分析报告》课件
- 五年级下美术课件-中国美术作品中人物的情感表现岭南版
- 列车自动驾驶子系统ATO
- 大象和他的长鼻子
- 九年义务教育小学数学教学大纲(人教版)
- 长松组织系统教材及测验整理笔记1
- 八年级地理《黄河》教学反思
- 嵌入式系统结课设计论文
- 目标责任书-营销总监
- 英国签证户口本翻译模板(共4页)
- 列管式换热器设计课程设计说明书
- 电镀生产工序
- 一线员工技能等级评定方案
评论
0/150
提交评论