浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题含解析_第1页
浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题含解析_第2页
浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题含解析_第3页
浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题含解析_第4页
浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江安吉天略外国语学校2025届高二上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在数列中,,则()A.2 B.C. D.2.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}3.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.4.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定5.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.6.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.7.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.8.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种9.已知函数,则()A.1 B.2C.3 D.510.已知平面,的法向量分别为,,则()A. B.C.,相交但不垂直 D.,的位置关系不确定11.椭圆的长轴长为()A. B.C. D.12.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,,若,则______14.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为________15.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为________cm.16.生活中有这样的经验:三脚架在不平的地面上也可以稳固地支撑一部照相机.这个经验用我们所学的数学公理可以表述为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF18.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.19.(12分)在数列中,,,且对任意的,都有.(1)数列的通项公式;(2)设数列,求数列的前项和.20.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围21.(12分)已知斜率为1的直线交抛物线:()于,两点,且弦中点的纵坐标为2.(1)求抛物线的标准方程;(2)记点,过点作两条直线,分别交抛物线于,(,不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.22.(10分)在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D2、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B3、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.4、B【解析】由,所以.5、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系6、B【解析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.7、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B8、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C9、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C10、C【解析】利用向量法判断平面与平面的位置关系.【详解】因为平面,的法向量分别为,,所以,即不垂直,则,不垂直,因为,即即不平行,则,不平行,所以,相交但不垂直,故选:C11、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.12、D【解析】根据集合交集的运算法则计算即可.【详解】∵A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B={-2,-1,0}.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】根据题意,易知,因为,所以,即,解得故答案为:714、【解析】先设出抛物线方程,写出准线方程和焦点坐标,利用得到抛物线方程,再利用三角形的面积公式进行求解.【详解】设抛物线的方程为,则焦点为,准线方程为,由题意,得,,,所以,解得,所以.故答案为:.15、20【解析】求出大椭圆的离心率等于小椭圆的离心率,然后求解小椭圆的长轴长【详解】在大椭圆中,,,则,.因为两椭圆扁平程度相同,所以离心率相等,所以在小椭圆中,,结合,得,所以小椭圆的长轴长为20.故填:20.【点睛】本题考查椭圆的简单性质的应用,对椭圆相似则离心率相等这一基础知识的考查16、不在同一直线上的三点确定一个平面【解析】根据题意结合平面公理2即可得出答案.【详解】解:根据题意可知,三脚架与地面接触的三个点不在同一直线上,则为数学中的平面公理2:不在同一直线上的三点确定一个平面.故答案为:不在同一直线上的三点确定一个平面.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析.【解析】(1)在中,,求得,由此能求出四棱锥的体积;(2)由平面,证得和,由此利用线面垂直的判定定理,即可证得平面.试题解析:(1)在中,.在中,.则.(2),为的中点,.平面.平面.为中点,为为中点,,则.平面.考点:四棱锥的体积公式;直线与平面垂直的判定与证明.18、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,此时直线与椭圆相交,所以直线l的方程是或.19、(1);(2).【解析】(1)由递推式可得,根据等比数列的定义写出通项公式,再由累加法求的通项公式;(2)由(1)可得,再应用裂项相消法求前项和【小问1详解】由可得:,又,,∴,则数列是首项为2,公比为2的等比数列,∴.∴.【小问2详解】∵,∴∴.20、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨迹为椭圆且点,为椭圆的左、右焦点,即记,则于是:,由对勾函数的性质:当时,,且,故的取值范围为21、(1);(2)见解析.【解析】(1)涉及中点弦,用点差法处理即可求得,进而求得抛物线方程;(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设,直线,则直线分别和抛物线方程联立,解得利用,结合直线方程,即可证得直线的斜率为定值.【详解】(1)设,则,两式相减,得:由弦中点纵坐标为2,得,故.所以抛物线的标准方程.(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设直线由得由点在抛物线上,可知上述方程的一个根为.即,同理.直线的斜率为定值.【点睛】本题考查应用点差法处理中点弦问题,直线与抛物线中,斜率为定值问题,考查分析问题的能力,考查学生的计算能力,难度较难.22、(1)证明见解析;(2)存在点,且的长为,理由见解析.【解析】(1)取的中点为,连接,得到,结合面面平行的判定定理证得平面平面,进而得到平面;(2)以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,设,求得的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论