山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题含解析_第1页
山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题含解析_第2页
山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题含解析_第3页
山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题含解析_第4页
山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省名校联盟新教材2025届高二数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,都为正实数,,则的最大值是()A. B.C. D.2.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.3.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.94.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π5.命题“,”的否定为()A., B.,C., D.,6.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.4007.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.8.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定9.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.5010.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.11.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.2012.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线是曲线的切线,也是曲线的切线,则__________14.某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试平均分为______15.已知数列的前n项和为,则______16.圆关于直线对称的圆的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,函数,直线是函数图象的一条对称轴(1)求函数的解析式及单调递增区间;(2)若,,的面积为,求的周长18.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.19.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求20.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列前项和.注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)已知椭圆C:的右顶点为A,上顶点为B.离心率为,(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,过点F的直线l与椭圆C相交于D,E两点,直线:与x轴相交于点H,过点D作,垂足为①求四边形ODHE(O为坐标原点)面积的取值范围;②证明:直线过定点G,并求点G的坐标22.(10分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D2、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B3、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B4、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题5、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A6、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B7、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B8、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.9、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.10、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.11、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.12、D【解析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【点睛】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.14、【解析】将每个矩形底边的中点值乘以对应矩形的面积,即可得解.【详解】由频率分布直方图可知,该班本次测试平均分为.故答案为:.15、【解析】先通过裂项相消求出,再代入计算即可.【详解】,则,故.故答案为:3.16、【解析】求出圆心关于直线对称点,从而求出对称圆的方程.【详解】圆心为,半径为1,设关于对称点为,则,解得:,故对称点为,故圆关于直线对称的圆的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),单调递增区间为.(2)【解析】(1)先利用向量数量积运算、二倍角公式、辅助角公式求出,再求单增区间;(2)利用面积公式求出,再利用余弦定理求出,即可求出周长.小问1详解】已知,,函数,所以.因为直线是函数图象的一条对称轴,所以,所以,又,所以当k=0时,符合题意,此时要求的单调递增区间,只需,解得:,所以的单调递增区间为.【小问2详解】由于,所以,所以.因为,所以.因为的面积为,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周长.18、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得19、(1),(2)4【解析】(1)根据,即可将直线的极坐标方程转化为普通方程;消参数,即可求出曲线的普通方程;(2)由题意易知,求出直线的参数方程,将其代入曲线的普通方程,利用一元二次方程根和系数关系式的应用,即可求出结果【小问1详解】解:直线极坐标方程为,即,又,可得的普通方程为,曲线的参数方程是(为参数,消参数,所以曲线的普通方程为【小问2详解】解:在中令得,,倾斜角,的参数方程可设为,即(为参数),将其代入,得,,设,对应的参数分别为,,则,,,异号,.20、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.【小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列为等差数列,所以.21、(1);(2)①;②详见解析;.【解析】(1)由题得,即求;(2)①由题可设,利用韦达定理法可得,进而可得四边形ODHE面积,再利用对勾函数的性质可求范围;②由题可得,令,通过计算可得,即得.【小问1详解】由题可得,解得,∴椭圆C的标准方程.【小问2详解】①由题可知,可设直线,,由,可得,∴,,∴,∴四边形ODHE面积,令,则,因为,所以,当时,取等号,∴,∴四边形ODHE面积取值范围为;②由上可得,直线,令,得,由,可得,∴,∴直线过定点G.22、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调性作答.【小问1详解】函数的定义域为,求导得:,依题意,函数在上有两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论