版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北张家口市2025届数学高一上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天2.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件5.已知命题p:∃x∈R,x2+2x<0,则A.∃x∈R,x2+2x≤0 B.∃x∈RC.∀x∈R,x2+2x≥0 D.∀x∈R6.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b7.已知函数,的值域为,则实数的取值范围是A. B.C. D.8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.9.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)10.已知函数,则下列区间中含有的零点的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为_________________12.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).13.圆柱的高为1,它的两个底面在直径为2的同一球面上,则该圆柱的体积为____________;14.已知函数是R上的减函数,则实数a的取值范围为_______15.已知函数,关于方程有四个不同的实数解,则的取值范围为__________16.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求证:角为第二象限角的充要条件是18.函数(1)解不等式;(2)若方程有实数解,求实数的取值范围19.已知函数是定义在R上的奇函数,当时,.(1)求函数在上的解析式;(2)求不等式解集.20.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.21.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.2、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B3、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.4、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C5、C【解析】根据特称命题否定是全称命题即可得解.【详解】把存在改为任意,把结论否定,¬p为∀x∈R,x2故选:C6、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.7、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.8、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.9、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查10、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】由于函数为增函数,函数在和上均为增函数,所以,函数在和上均为增函数.对于A选项,当时,,,此时,,所以,函数在上无零点;对于BCD选项,当时,,,由零点存在定理可知,函数的零点在区间内.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键12、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.13、【解析】由题设,易知圆柱体轴截面的对角线长为2,进而求底面直径,再由圆柱体体积公式求体积即可.【详解】由题意知:圆柱体轴截面的对角线长为2,而其高为1,∴圆柱底面直径为.∴该圆柱的体积为.故答案为:14、【解析】由已知结合分段函数的性质及一次函数的性质,列出关于a的不等式,解不等式组即可得解.【详解】因为函数是R上的减函数所以需满足,解得,即所以实数a的取值范围为故答案为:15、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.16、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】先证明充分性,即由可以推得角为第二象限角,再证明必要性,即由角为第二象限角可以推得成立.【详解】证明:充分性:即如果成立,那么为第二象限角若成立,那么为第一或第二象限角,也可能是y轴正半轴上的角;又成立,那么为第二或第四象限角因为成立,所以角的终边只能位于第二象限于是角为第二象限角则是角为第二象限角的充分条件必要性:即若角为第二象限角,那么成立若角为第二象限角,则,,则,同时成立,即角为第二象限角,那么成立则角为第二象限角是成立的必要条件综上可知,角为第二象限角的充要条件是18、(1)(2)【解析】(1)由,根据对数的单调性可得,然后解指数不等式即可.(2)由实数根,化为有实根,令,有正根即可,对称轴,开口向上,只需即可求解.【详解】(1)由,即,所以,,解得所以不等式的解集为.(2)由实数根,即有实数根,所以有实根,两边平方整理可得令,且,由题意知有大于根即可,即,令,,故故.故实数的取值范围.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.19、(1)(2)【解析】(1)根据奇函数的知识求得函数在上的解析式.(2)结合函数的单调性、奇偶性求得不等式的解集.小问1详解】当时,,.所以函数在上的解析式为.【小问2详解】当时,为增函数,所以在上为增函数.由得,所以,所以,所以不等式的解集为.20、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数,所以实数a的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年核工业301大队职工医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年05月新疆2024届中国民生银行乌鲁木齐分行暑期校园招考笔试历年参考题库附带答案详解
- 《矿山安全培训讲义》课件
- 2024年木里县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2025年华东师大版九年级生物下册阶段测试试卷
- 2025年沪科版高二物理下册阶段测试试卷含答案
- 2024年人民版七年级地理上册月考试卷含答案
- 2024年鲁教版七年级科学下册月考试卷
- 2025年苏教版九年级科学下册月考试卷
- 石油化工招投标代理协议范本
- 菌草技术及产业化应用课件
- 检验检测服务公司市场营销计划
- 医务人员外出进修流程图
- DB32∕T 2349-2013 杨树一元立木材积表
- 昌乐二中271高效课堂培训与评价ppt课件
- 颤病(帕金森病)中医护理常规
- 猪场名词及指标讲义
- 旋挖钻成孔掏渣筒沉渣处理施工工艺
- T∕CHTS 10040-2021 公路无机结合料稳定粒料基层振动法施工技术指南
- 集团后备人才培养方案
- 脑卒中偏瘫患者早期康复护理现状(一)
评论
0/150
提交评论