黑龙江七台河市2025届高一上数学期末监测试题含解析_第1页
黑龙江七台河市2025届高一上数学期末监测试题含解析_第2页
黑龙江七台河市2025届高一上数学期末监测试题含解析_第3页
黑龙江七台河市2025届高一上数学期末监测试题含解析_第4页
黑龙江七台河市2025届高一上数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江七台河市2025届高一上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.2.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.3.函数的定义域为()A B.C. D.4.已知函数一部分图象如图所示,如果,,,则()A. B.C. D.5.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限6.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.函数的单调递减区间是A. B.C. D.8.已知函数,则下列区间中含有的零点的是()A. B.C. D.9.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.10010.已知函数,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度12.若函数过点,则的解集为___________.13.已知曲线且过定点,若且,则的最小值为_____14.已知点,点P是圆上任意一点,则面积的最大值是______.15.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马,底面,,,,则此阳马的外接球的表面积为______.16.___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.18.已知函数.(1)当时,解不等式;(2)设,若,,都有,求实数a的取值范围.19.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.20.如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,中点(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积21.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.2、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小3、D【解析】由函数解析式可得关于自变量的不等式组,其解集为函数的定义域.【详解】由题设可得:,故,故选:D.4、C【解析】先根据函数的最大值和最小值求得和,然后利用图象求得函数的周期,求得,最后根据时取最大值,求得【详解】解:如图根据函数的最大值和最小值得求得函数的周期为,即当时取最大值,即故选C【点睛】本题主要考查了由的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力5、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B6、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.7、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质8、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】由于函数为增函数,函数在和上均为增函数,所以,函数在和上均为增函数.对于A选项,当时,,,此时,,所以,函数在上无零点;对于BCD选项,当时,,,由零点存在定理可知,函数的零点在区间内.故选:C.9、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.10、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④12、【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:13、【解析】由指数函数图象所过定点求出,利用“1”的代换凑配出定值后用基本不等式得出最小值.【详解】令,,则,∴定点为,,,当且仅当时等号成立,即时取得最小值.故答案为:.【点睛】本题考查指数函数的图象与性质,考查用基本不等式求最值.“1”的代换是解题关键.14、【解析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.15、【解析】将该几何体放入长方体中,即可求得外接球的半径,再由球的表面积公式即可得解.【详解】将该几何体放入长方体中,如图,易知该长方体的长、宽、高分别为、、,所以该几何体的外接球半径,所以该球的表面积.故答案为:.16、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(3)由题知,故不妨设,进而得,故构造函数,则函数在上单调递增,在作出函数图像,数形结合求解即可.【小问1详解】解:的定义域为,假设函数是“函数,则存在定义域内的实数使得,所以,所以,所以,所以函数“函数【小问2详解】解:函数有意义,则,定义域为因为函数为“函数”,所以存在实数使得成立,即存在实数使得,所以存在实数使得成立,即,所以当时,,满足题意;当时,,即,解得且,所以实数a的取值范围是【小问3详解】解:由为“函数”得,即,所以,不妨设,则由得,所以故令,则在上单调递增,又,作出函数图像如图,所以实数的取值范围为,即实数的最大值为18、(1),(2)【解析】(1)由同角关系原不等式可化为,化简可得,结合正弦函数可求其解集,(2)由条件可得在上的最大值小于或等于在上的最小值,利用单调性求的最大值,利用换元法,通过分类讨论求的最小值,由此列不等式求实数a的取值范围.【小问1详解】由得,,当时,,由,而,故解得,所以的解集为,.【小问2详解】由题意可知在上的最大值小于或等于在上的最小值.因为在上单调递减,所以在上的值域为.则恒成立,令,于是在恒成立.当即时,在上单调递增,则只需,即,此时恒成立,所以;当即时,在上单调递减,则只需,即,不满足,舍去;当即时,只需,解得,而,所以.综上所述,实数a的取值范围为.19、(1)第四象限;(2),.【解析】(1)根据题意得sinα<0,cosα>0进而求得答案.(2)先求得m的值,进而利用三角函数定义求得答案【详解】(1)由,得,由有意义,可知,所以是第四象限角.(2)因为,所以,解得又为第四象限角,故,从而,.【点睛】本题主要考查了三角函数的符号及象限的判断,考查三角函数定义,解题过程中特别注意三角函数符号的判断,是基础题20、(1)见解析;(2)见解析;(3).【解析】(Ⅰ)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(Ⅱ)证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;(Ⅲ)利用等体积法求三棱锥A-MOC的体积即可试题解析:(Ⅰ)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(Ⅱ)证明:∵AC=BC,O为AB的中点,∴OC⊥AB,又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(Ⅲ)在等腰直角三角形中,,所以.所以等边三角形的面积.又因为平面,所以三棱锥的体积等于.又因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为.考点:平面与平面垂直的判定;直线与平面平行的判定;用向量证明平行21、(1);(2)见解析【解析】(1)由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论