福福建省泉州市2025届高二数学第一学期期末经典模拟试题含解析_第1页
福福建省泉州市2025届高二数学第一学期期末经典模拟试题含解析_第2页
福福建省泉州市2025届高二数学第一学期期末经典模拟试题含解析_第3页
福福建省泉州市2025届高二数学第一学期期末经典模拟试题含解析_第4页
福福建省泉州市2025届高二数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福福建省泉州市2025届高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长为1的正方体中,为的中点,则点到直线的距离为()A. B.1C. D.2.抛物线的焦点到准线的距离是A. B.1C. D.3.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.34.已知函数在处取得极值,则()A. B.C. D.5.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切6.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1447.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.8.在单调递减的等比数列中,若,,则()A.9 B.3C. D.9.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则10.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.11.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.0212.等差数列中,是的前项和,,则()A.40 B.45C.50 D.55二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________14.已知数列满足,,若,则_______15.某中学拟从4月16号至30号期间,选择连续两天举行春季运动会,从已往的气象记录中随机抽取一个年份,记录天气结果如下:日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴雨雨阴晴晴晴雨估计运动会期间不下雨的概率为_____________.16.命题“若实数a,b满足,则且”是_______命题(填“真”或“假”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年月日,中国向世界庄严宣告,中国脱贫攻坚战取得了全面胜利,现行标准下万农村贫困人口全部脱贫,个贫困县全部摘帽,万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务,困扰中华民族几千年的绝对贫困问题得到了历史性的解决!为了巩固脱贫成果,某农科所实地考察,研究发现某脱贫村适合种植、两种经济作物,可以通过种植这两种经济作物巩固脱贫成果,通过大量考察研究得到如下统计数据:经济作物的亩产量约为公斤,其收购价格处于上涨趋势,最近五年的价格如下表:年份编号年份单价(元/公斤)经济作物的收购价格始终为元/公斤,其亩产量的频率分布直方图如下:(1)若经济作物的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计年经济作物的单价;(2)用上述频率分布直方图估计经济作物的平均亩产量(每组数据以区间的中点值为代表),若不考虑其他因素,试判断年该村应种植经济作物还是经济作物?并说明理由附:,18.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值19.(12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,O为底面正方形ABCD对角线的交点,E为PD的中点,且PA=AD.(1)求证:PB∥平面EAC;(2)求直线BD与平面EAC所成角的正弦值.20.(12分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,分别为椭圆的上,下顶点,过点且斜率为的直线交椭圆于另一点(异于椭圆的右顶点),交轴于点,直线与直线相交于点.求证:直线的斜率为定值.22.(10分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用空间向量点到直线的距离公式进行求解即可【详解】建立如图所示的空间直角坐标系,由已知,得,,,,,所以在上的投影为,所以点到直线的距离为故选:B2、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.3、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.4、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B5、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C6、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.7、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D8、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.9、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D10、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C11、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C12、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.14、【解析】由递推式,结合依次求出、即可.【详解】由,可得:,又,可得:.故答案为:.15、【解析】以每相邻两天为一个基本事件,求出试验的基本事件数,再求出两天都不下雨的基本事件数,利用古典概率公式计算作答.【详解】依题意,以每相邻两天为一个基本事件,如16号与17号、17号与18号为不同的两个基本事件,则从4月16号至30号期间,共有14个基本事件,它们等可能,其中相邻两天不下雨有16与17,19与20,20与21,21与22,22与23,26与27,27与28,28与29,共8个不同结果,所以运动会期间不下雨的概率为.故答案为:16、假【解析】列举特殊值,判断真假命题.【详解】当时,,所以,命题“若实数a,b满足,则且”是假命题.故答案为:假三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),元/公斤;(2)应该种植经济作物;理由见解析【解析】(1)利用表格数据求出中心点值,再利用最小二乘法求出回归直线方程,进而利用所求方程进行预测;(2)先利用频率分布直方图的每个小矩形面积之和为1求得值,再利用平均值公式求其平均值,再比较两种作物的亩产量进行求解.【详解】(1),,则关于回归直线方程为当时,,即估计年经济作物的单价为元/公斤(2)利用频率和为得:,所以经济作物的亩产量的平均值为:,故经济作物亩产值为元,经济作物亩产值为元,应该种植经济作物18、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和19、(1)证明见解析(2)【解析】(1)利用线面平行的判断定理,证明线线平行,即可证明;(2)建立空间直角坐标系,求平面的法向量,利用公式,即可求解.【小问1详解】连结EO,由题意可得O为BD的中点,又E是PD的中点,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小问2详解】如图,以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),设平面EAC的法向量为=(x,y,z),则,即,即,令y=1得x=-1,z=-1,∴平面EAC的一个法向量为=(-1,1,-1),∴设直线BD与平面EAC所成的角为θ,则sinθ=∴直线BD与平面EAC所成的角的正弦值.20、(1)(2)(3)不存在,理由见解析【解析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.,利用向量法求解异面直线成角即可.(2)先求出平面DEF的一个法向量,然后利用向量法求解点面距离.(3)设(),由可得关于的方程,从而得出答案.【小问1详解】由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.则,,,,故,,从而,所以异面直线AE与DF所成角的大小为.小问2详解】,设平面DEF的法向量为,则,即,取,得到平面DEF的一个法向量为.点A到平面DEF的距离为.【小问3详解】假设存在满足条件的点M,设(),则,从而.即,即,此方程无实数解,故不存在满足条件的点M.21、(1);(2)证明见解析.【解析】(1)根据条件求出,即可写出椭圆方程;(2)设直线的方程为,联立直线与椭圆,可表示出坐标,继而得出直线的方程,令可得的坐标,即可求出直线的斜率并得出定值.【详解】(1)设椭圆的焦距为,则①,②,又③,由①②③解得,,,所以椭圆的标准方程为.(2)证明:易得,,直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论