版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年云南大理市鹤庆县九上数学开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人2、(4分)如图,在▱ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=1cm,则AD的长是()cm.A.2 B.3 C.4 D.53、(4分)在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,924、(4分)如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是()A. B.C. D.5、(4分)当分式有意义时,字母x应满足()A.x≠1 B.x=0 C.x≠-1 D.x≠36、(4分)下列计算正确的是()A.﹣= B.×=6C.÷2=2 D.=﹣17、(4分)在同一平面直角坐标系内,将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(,1) B.(1,) C.(2,) D.(1,)8、(4分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组 B.9组 C.8组 D.7组二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.10、(4分)已知函数的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“<”或“=”).11、(4分)反比例函数与一次函数图象的交于点,则______.12、(4分)以1,1,为边长的三角形是___________三角形.13、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。三、解答题(本大题共5个小题,共48分)14、(12分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等:③当x<1时,y1<y2;④直线y1=2x与直线y2=﹣2x+4在平面直角坐标系中的位置关系是平行.其中正确的个数有()个.A.4 B.3 C.2 D.115、(8分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:(1)根据统计图所给的信息填写下表:平均数(分)中位数(分)众数(分)男生8女生88(2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?16、(8分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.17、(10分)如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)点A的坐标为,点B的坐标为;(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.18、(10分)如图,矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线与直线平行,且经过,则直线的解析式为:__________.20、(4分)若是的小数部分,则的值是______.21、(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.22、(4分)在同一平面直角坐标系中,直线与直线的交点不可能在第_______象限.23、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)当AP为何值时,四边形PMEN是菱形?并给出证明。25、(10分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.(1)求这个梯子的顶端A到地面的距离AC的值;(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?26、(12分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【详解】A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.2、A【解析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=1cm,∴AD=2cm.故选A.“点睛”本题考查平行四边形的性质、三角形的中位线定理,是基础知识比较简单.3、B【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:B.本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、B【解析】
将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【详解】解:直线y=x+b经过点B时,将B(3,1)代入直线y=x+b中,可得+b=1,解得b=-;
直线y=x+b经过点A时:将A(1,1)代入直线y=x+b中,可得+b=1,解得b=;
直线y=x+b经过点C时:将C(2,2)代入直线y=x+b中,可得1+b=2,解得b=1.
故b的取值范围是-≤b≤1.
故选B.考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.5、A【解析】
分式有意义,分母不为零.【详解】解:当,即时,分式有意义;故选:A.本题考查了分式有意义的条件.(1)若分式无意义,则分母为零;(2)若分式有意义,则分母不为零.6、B【解析】
利用二次根式的加减法对A进行判定;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;利用分母有理化可对D进行判断.【详解】A、原式=2﹣=,所以A选项错误;B、原式=2×3=6,所以B选项正确;C、原式=,所以C选项错误;D、原式=,所以D选项错误.故选:B.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7、B【解析】由原抛物线的顶点坐标,根据横坐标与纵坐标“左加右减”可得到平移后的顶点坐标:∵y=2x2+4x+1=2(x2+2x)+1=2[(x+1)2﹣1]+1=2(x+1)2﹣1,∴原抛物线的顶点坐标为(﹣1,﹣1).∵将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,其顶点坐标也作同样的平移,∴平移后图象的顶点坐标是(﹣1+2,﹣1-1),即(1,﹣2).故选B.8、A【解析】
在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A.此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.二、填空题(本大题共5个小题,每小题4分,共20分)9、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA【解析】根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.10、>【解析】分析:根据一次函数的性质得到y随x的增大而减小,根据1<2即可得出答案.详解:∵函数中,k=-3<0,∴y随x的增大而减小,∵函数y=-3x+2的图象经过点A(1,m)和点B(2,n),1<2,∴m>n,故答案为:>.点睛:本题主要考查对一次函数图象上点的坐标特征,一次函数的性质等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理是本题的关键.11、-1【解析】试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.考点:待定系数法求反比例函数解析式12、等腰直角【解析】
根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.【详解】∵∴是等腰三角形∵∴是直角三角形∴该三角形是等腰直角三角形故答案为:等腰直角.本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.13、【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:【详解】解:∵∴∵关于x的方程的解是负数∴∴解得本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.三、解答题(本大题共5个小题,共48分)14、B【解析】
联立y1=2x,y2=-2x+4解方程组可得A点坐标,然后把x=1代入两个函数解析式可得当x=1时,y1=2,y2=2;画出两函数图象可从图象上得到当x<1时,y1<y2;直线y1=2x与直线y2=2x-4不平行.【详解】联立y1=2x,y2=−2x+4得,解得:,∴点A的坐标为(1,2),故①正确;当x=1时,y1=2,y2=2,故②正确;如图:当x<1时,y1<y2故③正确;直线y1=2x与直线y2=2x−4不平行,故④错误;故选:B.此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则15、(1)8;8;8;(2)女生测试成绩更整齐些【解析】
(1)根据平均数、众数的定义求解即可;(2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.【详解】(1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5)÷(1+3+5+7+4+5)=8分;男生的众数:∵8分出现的次数最多,∴众数是8分;女生的众数:∵8分出现的次数最多,∴众数是8分;(2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,∵1.76<2,∴女生测试成绩更整齐些.本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.16、(1)证明见解析;(2)四边形DEBF的周长为12,面积是4【解析】分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.
(2)求四边形DEBF的周长,求出BE和DE即可.详解:(1)∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,AD=BC∵DE、BF分别是∠ADC和∠ABC的角平分线∴∠ADE=∠CDE,∠CBF=∠ABF∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF∴∠AED=∠ADE,∠CFB=∠CBF∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF即BE=DF∵DF∥BE,∴四边形DEBF是平行四边形∵∠A=60°,AE=AD∴△ADE是等边三角形∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=∴四边形DEBF的面积=BE×DG=2×=4点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.17、(1)A(2,0),B(-3,0);(2)当0≤n≤1时,S=10-2n;当1<n≤时,S=2n-10;(3)n=或0≤n≤1.【解析】
(1)令y=0,则x-1=0,求A(2,0),由平行四边形的性质可知AB=1,则B(-3,0);(2)易求E(0,-1),当l到达C点时的解析式为y=x+,当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)由点可以得到AD⊥AE;当P在AD上时,△AEP为直角三角形,0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),可得=-2,求出P(-,4),此时l的解析式为y=x+,则n=.【详解】(1)令y=0,则x-1=0,x=2,∴A(2,0),∵C的坐标为(-1,4),四边形ABCD是平行四边形,∴AB=CD=1,∴OB=AB-OA=3,∴B(-3,0);(2)当x=0时,y=x﹣1=-1,所以E(0,-1),∵直线AE沿y轴向上平移得到l,当l到达C点时的解析式为y=x+,此时l与y轴的交点为(0,),当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)∵D(0,4),A(2,0),E(0,-1),∴AD=2,AE=,ED=1,∴AD2+AE2=ED2,∴AD⊥AE,当P在AD上时,△AEP为直角三角形,∴0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),∴=-2,∴m=-,∴P(-,4),∴此时l的解析式为y=x+,∴n=;综上所述:当△AEP为直角三角形时,n=或0≤n≤1.本题是一次函数的综合题;熟练掌握①平行四边形的性质求点的坐标;②动点中求三角形面积;③利用直角三角形的性质解决直线解析式,进而确定n的范围是解题的关键.18、(1)证明见解析;(2)证明见解析.【解析】
(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.【详解】∵直线与直线平行,∴k=1,把代入,得1+b=4,∴b=1,∴.故答案为:.本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.20、1【解析】
根据题意知,而,将代入,即可求解.【详解】解:∵是的小数部分,而我们知道,∴,∴.故答案为1.本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.21、1【解析】
根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.【详解】解:如图:
由题意得:AB=AC=10cm,BC=11cm,
作AD⊥BC于点D,则有DB=BC=8cm,
在Rt△ABD中,AD==1cm.
故答案为1.本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.22、四【解析】
根据一次函数的性质确定两条直线所经过的象限可得结果.【详解】解:直线y=2x+3过一、二、三象限;当m>0时,直线y=-x+m过一、二、四象限,两直线交点可能在一或二象限;当m<0时,直线y=-x+m过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=2x+3与直线y=-x+m的交点不可能在第四象限,故答案为四.本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.23、1【解析】分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.故答案为1.点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)当PA=5时,四边形PMEN为菱形,理由见解析.【解析】分析:(1)用三角形的中位线定理证明四边形PMEN的两组对边分别平行;(2)由(1)得四边形PMEN是平行四边形,只需证PM=PN,即PC=PD,故要证△APD≌△BPC.详解:(1)∵M,E分别为PD,CD的中点,∴ME∥PC,同理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作协议合同范本大全
- 鲍温样丘疹病病因介绍
- 2023房屋租赁协议书样本6篇
- 2025工厂转让协议书
- 2024-2025学年山东省滨州市无棣县青岛版二年级上册期中考试数学试卷(原卷版)-A4
- 2023年天津市十二区重点学校高考语文二模试卷
- 重庆2020-2024年中考英语5年真题回-教师版-专题03 短文填空
- 激励与约束对基层卫生改革的几点思考课件
- 2024-2025食醋行业发展现状及未来趋势报告
- PLC控制技术考试模拟题+参考答案
- 法兰盘尺寸误差标准
- 消防设施维保服务投标方案
- DB11/1983-2022-建筑类涂料与胶粘剂挥发性有机化合物含量限值标准
- 机房设备搬迁解决方案
- 体育活动方案设计躲避球
- MOOC 国际私法-暨南大学 中国大学慕课答案
- 中国能源建设集团投资有限公司社会招聘笔试真题2023
- 新概念英语课件-NCE2-Lesson08课(共40张)
- 部编小学语文单元作业设计四年级上册第五单元
- 液氯槽车卸车安全操作规程培训
- 排水管道检测项目总体实施方案样本
评论
0/150
提交评论