版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吕梁市重点中学2025届高二数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.32.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.3.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.74.椭圆的焦点坐标为()A. B.C. D.5.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和6.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.7.椭圆的长轴长是短轴长的2倍,则离心率()A. B.C. D.8.椭圆的焦点为、,上顶点为,若,则()A B.C. D.9.若命题为“,”,则为()A., B.,C., D.,10.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.11.执行如图所示的程序框图,输出的值为()A. B.C. D.12.过点,且斜率为2的直线方程是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则曲线在点处的切线方程是______.14.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______15.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.16.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.18.(12分)已知数列中,,的前项和为,且数列是公差为-3的等差数列.(1)求;(2)若,数列前项和为.19.(12分)2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.20.(12分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于21.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.22.(10分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D2、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C3、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.4、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B5、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C6、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B7、D【解析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【详解】∵,∴,故,故选:D8、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.9、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B10、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.11、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.12、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:14、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.15、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.16、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由两直线平行可得出关于的等式,求出的值,再代入两直线方程,验证两直线是否平行,由此可得出结果;(2)分析可知,求出直线在轴、轴上的截距,结合已知条件可得出关于的等式,即可解得的值.【小问1详解】解:由,则,即,解得或.当时,,,此时;当时,,,此时重合,不合乎题意.综上所述,;【小问2详解】解:对于直线,由已知可得,则,令,得;令,得.因为直线在轴、轴上截距之和等于,即,解得.18、(1)(2)【解析】(1)由条件先求出通项公式,得出,再由可得出答案.(2)由(1)可知,由裂项相消法可得答案.【小问1详解】由,则由数列是公差为的等差数列,则所以当时,当时,符合上式所以【小问2详解】由(1)可知则19、(1)(2)选择方案二更划算【解析】(1)要使方案二比方案一优惠,则需要抽出至少一个红球,求出没有抽出红色小球的概率,再根据对立事件的概率公式即可得出答案;(2)若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,求出对应概率,从而可求得的期望,在比较的期望与9200的大小即可得出结论.【小问1详解】解:根据题意得要使方案二比方案一优惠,则需要抽出至少一个红球,设没有抽出红色小球为事件,则,所以所求概率;【小问2详解】解:若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,,,,,故的分布列为X60007000800010000P所以(元),因为,所以选择方案二更划算.20、(1);(2)存在,1;(3)证明见解析.【解析】(1)根据几何关系即可求p;(2)求解为定值1,即可求λ=1;(3)先求的面积,再由(为三角周长)可求内切圆半径r.【小问1详解】由题意焦点到准线的距离等于该正三角形一条边上的高线,因此,∴抛物线E的方程为【小问2详解】设直线的斜率为,直线方程为,记,,消去,得由,得且,,,,因此,即存在实数满足要求【小问3详解】由(2)知,,点F到直线AB的距离,∴的面积记的内切圆半径为r,∵,∴∴内切圆的面积小于21、(1);(2).【解析】(1)根据已知条件,运用余弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 订货合同的履行要点
- 设备品质保证书案例
- 设备采购合同的交货方式
- 设计项目招标文件招标
- 诚信担保书状
- 财务审计与合规性评估
- 购销合同回款期法律规定
- 购销合同的仲裁与诉讼
- 购销资产合同书范本
- 赠送运营服务合同模板
- 政治生日愿望三篇
- 华友钴业行业个股分析
- 期末试卷(试题)-2023-2024学年一年级数学下册人教版
- 护士家长进课堂
- 保洁玻璃清洁培训课件
- 住房保障社工述职报告
- 知识产权维权授权书
- 第23课《孟子》三章《得道多助失道寡助》公开课一等奖创新教学设计统编版语文八年级上册
- 餐厅预防食品异物课件
- 郑州大学801经济学基础(政治经济学、西方经济学)历年考研真题汇编
- 2022年新高考重庆政治试卷真题(解析版)
评论
0/150
提交评论