版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省郴州市2025届高二上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.2.在四面体中,,,,且,,则等于()A. B.C. D.3.已知直线,,若,则实数()A. B.C.1 D.24.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.25.在等比数列中,若,,则()A. B.C. D.6.已知等差数列满足,,则()A. B.C. D.7.数列满足,对任意,都有,则()A. B.C. D.8.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.9.若等比数列满足,,则数列的公比为()A. B.C. D.10.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.11.过点且斜率为的直线方程为()A. B.C. D.12.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的焦点分别为,A为椭圆上一点,则________14.给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.15.下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).16.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设AB是过抛物线焦点F的弦,若,,求证:(1);(2)(为弦AB的倾斜角)18.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值19.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值20.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.21.(12分)如图,在正方体中,为棱的中点.求证:(1)平面;(2)求直线与平面所成角的大小.22.(10分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.2、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.3、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.4、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B5、D【解析】由等比数列的性质得,化简,代入数值求解.【详解】因为数列是等比数列,所以,由题意,所以.故选:D6、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.7、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.8、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C9、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D10、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A11、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.12、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】直接利用椭圆的定义即可求解.【详解】因为椭圆的焦点分别为,A为椭圆上一点,所以.故答案为:414、②③【解析】由垂直于同一直线的两直线的位置关系判断①;由直线与平面垂直的性质判断②③;由空间中平面与平面的位置关系判断④【详解】①若两条不同的直线垂直于第三条直线,则这两条直线有三种位置关系:平行、相交或异面,故错误;②根据线面垂直的性质知,若两个不同的平面垂直于一条直线,则这两个平面互相平行,故正确;③由线面垂直的性质知:若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行,故正确④若两个不同的平面同时垂直于第三个平面,这两个平面相交或平行,故错误.其中所有正确命题的序号为②③故答案为:②③15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与比较大小,即可确定答案.【详解】①由题设,几何体为棱长为的正四面体,该正四面体可放入一个正方体中,且正方体的棱长为,该正四面体的外接球半径为,满足要求;②由题设,几何体为棱长为的正四棱锥,如下图所示:设,连接,则为、的中点,因为四边形是边长为的正方形,则,所以,,所以,,所以,,,所以点为正四棱锥的外接球球心,且该球的半径为,不满足要求;③由题设,几何体为棱长为的正八面体,该正八面体可由两个共底面,且棱长均为的正四棱锥拼接而成,由②可知,该正八面体的外接球半径为,不满足要求;④由题设,几何体为棱长为的正方体,其外接球半径为,不满足要求;故答案为:①.16、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)设直线的方程为,代入,再利用韦达定理,即可得到结论;(2)由抛物线的定义,结合余弦函数的定义,即可得到的长,同理可得的长,两式相乘即可证明;【小问1详解】证明:由题意设直线的方程为,代入,可得,所以;【小问2详解】证明:如图,不妨设弦AB的倾斜角为锐角,作垂直于抛物线准线,垂足为M,N,由抛物线的定义可得,所以,同理可得,,所以,当为直角或钝角时,同理可证明,故.18、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为19、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为20、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.21、(1)证明见解析;(2).【解析】(1)连接,交于,连接,推导出,由此能证明平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出直线与平面所成角的大小.【详解】(1)证明:连接,交于,连接,∵在正方体中,是正方形,∴是中点,∵为棱的中点,∴,∵平面,平面,∴平面.(2)解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,设正方体中棱长为2,则,,,,,,,设平面的法向量,则,取,得,设直线与平面所成角的大小为,则,∴,∴直线与平面所成角的大小为.【点睛】(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角22、(1)极大值;极小值(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业工作计划样本
- 2024年个人借款协议:标准公司版版
- 2024年不动产抵押反担保权益详细合同一
- 2024年企业人力资源管理优化顾问服务协议一
- 2024年企业办公自动化系统设计与实施承包合同
- 2024个人信息保护及运输合同
- 2024年度铝塑窗施工技术培训合同3篇
- 二零二四年度合作开发合同:虚拟现实游戏联合开发3篇
- 2024年呼和浩特客运资格证考试题答案
- 2024年劳动合同修改范本细则版
- 汽车新技术应用演示文稿
- 高中心理健康教育-【2 找到适合自己的学习方法】
- 2023年国家基本药物制度考试试题及答案
- 感觉统合发展评定量表以及原始分与标准分转换表
- 美发师高级评分记录表
- 产前筛查、诊断及新生儿疾病筛查
- 实验室绩效考核细则
- 房屋建筑与装饰工程消耗量定额Y
- X5032铣床主传动系统改造论文说明书
- 2023年消防接警员岗位理论知识考试参考题库(浓缩500题)
- GB/T 786.1-1993液压气动图形符号
评论
0/150
提交评论