福建省莆田四中2025届数学高一上期末学业水平测试模拟试题含解析_第1页
福建省莆田四中2025届数学高一上期末学业水平测试模拟试题含解析_第2页
福建省莆田四中2025届数学高一上期末学业水平测试模拟试题含解析_第3页
福建省莆田四中2025届数学高一上期末学业水平测试模拟试题含解析_第4页
福建省莆田四中2025届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田四中2025届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B.C. D.2.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.4.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.5.如图所示,在中,D、E分别为线段、上的两点,且,,,则的值为().A. B.C. D.6.已知,,,则a、b、c大小关系为()A. B.C. D.7.已知函数是定义在R上的周期为2的偶函数,当时,,则A. B.C. D.8.已知函数是定义在上的奇函数,,且,则()A. B.C. D.9.若,则的大小关系为()A. B.C. D.10.已知角满足,则A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.12.已知向量,,且,则__________.13.已知点在直线上,则的最小值为______14.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________15.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________16.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?18.已知,,(1)求和;(2)求角的值19.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合20.已知函数,若,且,.(1)求与的值;(2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围.21.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】几何体是一个圆柱,圆柱的底面是一个直径为2的圆,圆柱的高是2,侧面展开图是一个矩形,进而求解.【详解】由三视图可知该几何体是底面半径为1高为2的圆柱,∴该几何体的侧面积为,故选:A【点睛】本题考查三视图和圆柱的侧面积,关键在于由三视图还原几何体.2、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题3、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B4、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.5、C【解析】由向量的线性运算可得=+,可得,又A,M,D三点共线,则存在b∈R,使得,则可建立关于a,b的方程组,即可求得a值,从而可得λ,μ,进而得解【详解】解:因为,,所以,,所以,所以,又A,M,D三点共线,则存在b∈R,使得,所以,解得,所以,因为,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故选:C6、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C7、A【解析】依题意有.8、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C9、D【解析】根据对数的运算性质以及指数函数和对数函数的单调性即可判断【详解】因为,而函数在定义域上递增,,所以故选:D10、B【解析】∵∴,∴,两边平方整理得,∴.选B二、填空题:本大题共6小题,每小题5分,共30分。11、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题12、【解析】根据共线向量的坐标表示,列出方程,即可求解.【详解】由题意,向量,,因为,可得,解得.故答案为:.13、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.14、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题15、1或-1【解析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.16、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m/s(2)45【解析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,由题意得:因为,所以,即,所以不小于T的最小整数为4518、(1);(2)【解析】(1)根据以及同角三角函数基本关系,即可求出结果;(2)由得,进而可求出的值,再由两角差的正切公式即可求出结果.【详解】(1)已知,由,解得.(2)由得又,,【点睛】本题主要考查三角恒等变换,熟记同角三角函数基本关系以及两角差的正切公式即可,属于基础题型.19、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为20、(1),.(2).【解析】(1)由,可得,结合,得,,则,;(2),,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围.试题解析:(1)设,则,因为,因为,得,,则,.(2)由题可知,,.当时,,在上单调递减,且,单调递增,且,此时两个图象仅有一个交点.当时,,在上单调递减,在上单调递增,因为两个图象仅有一个交点,结合图象可知,得.综上,正实数的取值范围是.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论