2025届浙江省衢州一中数学高一上期末质量检测试题含解析_第1页
2025届浙江省衢州一中数学高一上期末质量检测试题含解析_第2页
2025届浙江省衢州一中数学高一上期末质量检测试题含解析_第3页
2025届浙江省衢州一中数学高一上期末质量检测试题含解析_第4页
2025届浙江省衢州一中数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省衢州一中数学高一上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的大小关系是()A. B.C. D.2.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.33.已知角终边经过点,则的值分别为A. B.C. D.4.设全集,,,则A. B.C. D.5.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.6.不等式恒成立,则的取值范围为()A. B.或C. D.7.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.08.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知,,则直线与直线的位置关系是()A.平行 B.相交或异面C.异面 D.平行或异面10.已知,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________12.若数据的方差为3,则数据的方差为__________13.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________14.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.15.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.16.已知直线与圆C:相交于A,B两点,则|AB|=____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)存在,使得不等式成立,求实数k的取值范围;(2)方程有负实数解,求实数k的取值范围.18.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围19.已知函数的部分图像如图所示.(1)求函数的解析式;(2)若函数在上取得最小值时对应的角度为,求半径为2,圆心角为的扇形的面积.20.当,函数为,经过(2,6),当时为,且过(-2,-2).(1)求的解析式;(2)求;21.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B2、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.3、C【解析】,所以,,选C.4、B【解析】全集,,,.故选B.5、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B6、A【解析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.7、B【解析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.8、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.9、D【解析】由直线平面,直线在平面内,知,或与异面【详解】解:直线平面,直线在平面内,,或与异面,故选:D【点睛】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答10、B【解析】通过计算可知,,,从而得出,,的大小关系.【详解】解:因为,所以,,所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.12、12【解析】所求方差为,填13、4、5、6【解析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力14、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:15、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.16、6【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以故答案为:6三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)令,然后分离参数,求出函数的最大值即可得答案;(2)由题意,令,则,原问题等价于:在上有解,即在上有解,利用一元二次方程根的分布即可求解.【小问1详解】解:由题意,令,则原不等式等价于:存在,使成立,即存在,使成立,由二次函数的性质知,当,即时,取得最大值1,所以【小问2详解】解:由题意,因为方程有负实数根,则令,有,原问题等价于:在上有解,即在上有解令,,则或或或或,解得或或或或,即实数k的取值范围为.18、(1);(2);(3).【解析】(1)根据f(x)图像过点,且满足列出关于m和n的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值;(3)由题可知方程x=g(x)有两个正根,根据韦达定理即可求出t范围.【小问1详解】∵的图象过点,∴①又,∴②由①②解,,∴;【小问2详解】,,当,即时,函数在上单调递减,∴;当,即时,函数在上单调递减,在单调递增,∴;当时,函数在上单调递增,∴综上,【小问3详解】设有两个不相等的不动点、,且,,∴,即方程有两个不相等的正实根、∴,解得19、(1).(2).【解析】(1)由图象观察,最值求出,周期求出,特殊点求出,所以;(2)由题意得,所以扇形面积试题解析:(1)∵,∴根据函数图象,得.又周期满足,∴.解得.当时,.∴.∴.故.(2)∵函数的周期为,∴在上的最小值为-2.由题意,角满足,即.解得.∴半径为2,圆心角为的扇形面积为.20、(1)(2)27【解析】(1)利用待定系数法求得.(2)根据的解析式求得.【小问1详解】依题意,所以【小问2详解】由(1)得.21、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论