版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省微山县第二中学高二上数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则2.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.983.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定4.设直线,.若,则的值为()A.或 B.或C. D.5.椭圆的焦点为、,上顶点为,若,则()A B.C. D.6.等比数列的各项均为正数,已知向量,,且,则A.12 B.10C.5 D.7.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.88.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,9.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.10.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟11.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小12.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.5二、填空题:本题共4小题,每小题5分,共20分。13.函数在处切线的斜率为_____14.已知,,且,则的最小值为___________15.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______16.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的列联表中,______.会外语不会外语合计男ab20女6d合计1850三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.18.(12分)如图,在正三棱柱中,,,,分别为,,的中点(1)证明:(2)求平面与平面所成锐二面角的余弦值19.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值20.(12分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.21.(12分)已知二次函数.(1)若时,不等式恒成立,求实数的取值范围.(2)解关于的不等式(其中).22.(10分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C2、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D3、A【解析】∵且,∴,又,∴,故选A.4、A【解析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【详解】因为,则,解得或.故选:A.5、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.6、C【解析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出【详解】向量=(,),=(,),且•=4,∴+=4,由等比数列的性质可得:=……===2,则log2(•)=故选C【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题7、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C8、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.9、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.10、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.11、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C12、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】求得函数的导数,计算得,即可得到切线的斜率【详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:114、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:2515、##【解析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:16、24【解析】根据题意列方程组求解即可【详解】由题意得所以,,.故答案为:24三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用频率和为1求出a;利用百分位数的定义求出知识竞赛成绩的第50百分位数;(2)先利用分层抽样求出男、女生的人数,利用古典概型求概率.【小问1详解】,由,解得设该次知识竞赛成绩的第50百分位数为x,则,解得:.即该次知识竞赛成绩的第50百分位数为【小问2详解】由频率分布直方图可知:分数在)的人数有人,所以这人中,女生有人,记为、,男生有人,记为、、、从这人中随机选取人,基本事件为:、、、、、、、、、、、、、、,共种不同取法;则至少有人是女生的基本事件为、、、、、、、、,共种不同取法,则所求的概率为18、(1)证明见解析(2)【解析】(1)由已知,以为坐标原点,建立空间直角坐标系,分别表示出B、D、E、F点的坐标,然后通过计算向量数量积来进行证明;(2)由第(1)建立的空间直角坐标系,分别表示出对应点的坐标,然后计算平面与平面的法向量,然后通过法向量去计算两平面所成的锐二面角即可.【小问1详解】如图,以为坐标原点,以,的方向分别为,轴的正方向建立如图所示的空间直角坐标系,由,,,分别为,,的中点,则,,证明:因为,,所以,所以【小问2详解】设平面的法向量为,因为,,所以,令,得设平面的法向量为,则令,得因为所以平面与平面所成锐二面角的余弦值为19、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和20、(1)平面AEC,理由见解析(2)证明见解析【解析】(1)以线面平行的判定定理去证明直线与平面平行即可;(2)以线面垂直的判定定理去证明直线面即可.【小问1详解】连接BD,设,连接OE.在中,O、E分别是BD、的中点,则.因为直线OE在平面AEC上,而直线不在平面AEC上,根据直线与平面平行的判定定理,得到直线平面AEC.【小问2详解】正方体中,故,又,故同理故,又,故又根据直线与平面垂直的判定定理,得直线平面.21、(1);(2)答案见解析.【解析】(1)结合分离常数法、基本不等式求得的取值范围.(2)将原不等式转化为,对进行分类讨论,由此求得不等式的解集.【详解】(1)不等式即为:,当时,可变形为:,即.又,当且仅当,即时,等号成立,,即.实数的取值范围是:.(2)不等式,即,等价于,即,①当时,不等式整理为,解得:;当时,方程的两根为:,.②当时,可得,解不等式得:或;③当时,因为,解不等式得:;④当时,因为,不等式的解集为;⑤当时,因为,解不等式得:;综上所述,不等式的解集为:①当时,不等式解集为;②当时,不等式解集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年医院卫生工作上半年总结(2篇)
- 跨境电商平台2024年度运营管理与优化咨询服务合同
- 团建活动合同模版
- 2024年度演艺经纪合同:艺人经纪公司代理2篇
- 合同封面图片2篇
- 2024年度工程设计咨询不泄露商业秘密协议3篇
- 2024年度钢筋工程分阶段验收合同2篇
- 建筑安装工程承包合同条例
- 年度品牌管理服务合同2024
- 工业购销合同模板范本完整版
- 铁路线路工拨道作业指导书
- 医健卫统一资源管理平台解决方案.docx
- 青年教师培养方案
- 2016年度优秀团队及优秀员工评选方案
- 护士延续注册体检表下载
- 供配电系统的检查与维护
- 锻压设备——辗环机作业
- 智能手机应用及云上智农APP应用培训PPT课件
- 房屋建筑学 墙体ppt
- 浅议幼儿园儿童综合素质提高策略
- 水污染物连续自动监测系统安装调试报告
评论
0/150
提交评论