2025届安徽省定远县二中高二数学第一学期期末质量检测试题含解析_第1页
2025届安徽省定远县二中高二数学第一学期期末质量检测试题含解析_第2页
2025届安徽省定远县二中高二数学第一学期期末质量检测试题含解析_第3页
2025届安徽省定远县二中高二数学第一学期期末质量检测试题含解析_第4页
2025届安徽省定远县二中高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省定远县二中高二数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.2.在三棱锥中,点E,F分别是的中点,点G在棱上,且满足,若,则()A. B.C. D.3.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.4.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.5.等差数列中,,,则()A.1 B.2C.3 D.46.已知命题,命题,,则下列命题中为真命题的是A. B.C. D.7.圆关于直线对称,则的最小值是()A. B.C. D.8.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.9.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.10.过点与直线平行的直线的方程是()A. B.C. D.11.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.012.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知动圆P过定点,且在定圆的内部与其相内切,则动圆P的圆心的轨迹方程为______14.经过点,,的圆的方程为______.15.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647616.数列的前项和为,则该数列的通项公式___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标18.(12分)已知椭圆的离心率为,直线与椭圆C相切于点(1)求椭圆C的方程;(2)已知直线与椭圆C交于不同的两点M,N,与直线交于点Q(P,Q,M,N均不重合),记的斜率分别为,若.证明:为定值19.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.20.(12分)设{an}是公比为正数的等比数列a1=2,a3=a2+4(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn21.(12分)如图,在四棱柱中,,,,四边形为菱形,在平面ABCD内的射影O恰好为AD的中点,M为AB的中点.(1)求证:平面;(2)求平面与平面夹角的余弦值.22.(10分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A2、B【解析】利用空间向量的加、减运算即可求解.【详解】由题意可得故选:B.3、D【解析】利用空间向量的加法与减法可得出关于、、的表达式.【详解】.故选:D.4、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.5、B【解析】根据给定条件利用等差数列性质直接计算作答.【详解】在等差数列中,因,,而,于是得,解得,所以.故选:B6、D【解析】命题是假命题,命题是真命题,根据复合命题的真值表可判断真假.【详解】因为,故命题是假命题,又命题是真命题,故为假,为假,为假,为真命题,故选D.【点睛】复合命题的真假判断有如下规律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.7、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.8、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D9、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题10、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.11、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.12、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设切点为,根据题意,列出点满足的关系式即.则点的轨迹是椭圆,然后根据椭圆的标准方程求点的轨迹方程【详解】设动圆和定圆内切于点,动点到定点和定圆圆心距离之和恰好等于定圆半径,即,点的轨迹是以,为两焦点,长轴长为10的椭圆,,点的轨迹方程为,故答案:14、【解析】设所求圆的方程为,然后将三个点的坐标代入方程中解方程组求出的值,可得圆的方程【详解】设所求圆的方程为,则,解得,所以圆的方程为,即,故答案为:15、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.16、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或18、(1);(2)证明见解析.【解析】(1)根据椭圆离心率和椭圆经过的点建立方程组,求解方程组可得椭圆的方程;(2)先根据相切求出直线的斜率,结合可得,再逐个求解,,然后可证结论.【小问1详解】解:由题意,解得故椭圆C的方程为.【小问2详解】证明:设直线的方程为,联立得,因为直线与椭圆C相切,所以判别式,即,整理得,所以,故直线的方程为,因为,所以,设直线的方程为,联立方程组解得故点Q坐标为,联立方程组,化简得设点因为判别式,得又,所以故,于是为定值.【点睛】直线与椭圆的相切问题一般是联立方程,结合判别式为零求解;定值问题的求解一般结合目标式中的项,逐个求解,代入验证即可.19、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.20、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题21、(1)证明见解析(2)【解析】(1)先证明,,即可证明平面;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为O为在平面ABCD内的射影,所以平面ABCD,因为平面ABCD,所以.如图,连接BD,在中,.设CD的中点为P,连接BP,因为,,,所以,且,则.因为,所以,易知,所以.因为平面,平面,,所以平面.【小问2详解】由(1)知平面ABCD,所以可以点O为坐标原点,以OA,,所在直线分别为x,z,以平面ABCD内过点O且垂直于OA的直线为y轴,建立如图所示的空间直角坐标系,则,,,,,所以,,,,设平面的法向量为,,,则可取平面的一个法向量为.设平面的法向量为,,,则令,得平面的一个法向量为.设平面与平面的平面角为,由法向量的方向可知与法向量的夹角大小相等,所以,所以平面与平面夹角的余弦值为.22、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论