版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省忻州二中高二数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则2.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得3.已知点是椭圆上一点,点,则的最小值为A. B.C. D.4.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定5.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.46.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.7.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.8.直线的一个法向量为()A. B.C. D.9.等差数列前项和,已知,,则的值是().A. B.C. D.10.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.11.若方程表示圆,则实数的取值范围为()A. B.C. D.12.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.14.已知点P在圆上,已知,,则的最小值为___________.15.已知函数有三个零点,则正实数a的取值范围为_________16.已知函数,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(12分)某项目的建设过程中,发现其补贴额x(单位:百万元)与该项目的经济回报y(单位:千万元)之间存在着线性相关关系,统计数据如下表:补贴额x(单位:百万元)23456经济回报y(单位:千万元)2.5344.56(1)请根据上表所给的数据,求出y关于x的线性回归直线方程;(2)为高质量完成该项目,决定对负责该项目的7名工程师进行考核.考核结果为4人优秀,3人合格.现从这7名工程师中随机抽取3人,用X表示抽取的3人中考核优秀的人数,求随机变量X的分布列与期望.参考公式:19.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.20.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:21.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?22.(10分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B2、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B3、D【解析】设,则,.所以当时,的最小值为.故选D.4、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.5、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B6、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D7、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.8、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.9、C【解析】由题意,设等差数列的公差为,则,故,故,故选10、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.11、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.12、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.14、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:15、【解析】求导易得函数有两个极值点和,根据题意,由求解.【详解】由,可得函数有两个极值点和,,,若函数有三个零点,必有解得或故答案为:16、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将代入即可求解;(2)首先结合已知条件分别求出命题和的解,写出,然后利用充分不必要的特征即可求解.【详解】(1)由题意可知,,解得,故实数的取值范围为;(2)由,解得或,由,解得,故命题:或;命题:,从而:或,因为是的充分不必要条件,所以或或,从而,解得,故实数的取值范围为.18、(1)(2)分布列答案见解析,数学期望:【解析】(1)根据表中的数据和公式直接求解即可,(2)由题意可知,的可能取值为0,1,2,3,然后求各自对应的概率,从而可求得分布列和期望【小问1详解】.,...【小问2详解】由题意可知,的可能取值为0,1,2,3.,,分布列为0123.19、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.20、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.21、(1)答案见解析;(2)应选择.【解析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 恒流恒压电源课程设计
- 体育行业的会计工作总结
- 线性代数总结课程设计
- 自动散热器课程设计
- 电子信息行业电话客服工作总结
- 文化行业采购合作案例分析
- 教育行业美工工作心得交流
- 2023-2024学年上海师大附中闵行分校高一(下)期中语文试卷
- 医疗机构保安工作内容详解
- IT科技行业中信息技术顾问的工作总结
- 体检中心组织架构
- 森林抚育投标方案
- 中小学教育中课程资源的开发与利用
- 大班科学教案:我和风儿做游戏教案及反思
- 园艺治疗概念、内涵与理论依据
- 后续服务承诺及保证措施-后续服务
- 提高无创呼吸机患者的依从性
- 小儿急性颅内压增高的护理课件
- 肿瘤科工作制度
- 幼儿园幼儿日常行为规范
- 供应链质量防线:供应商质量管理的策略、方法与实践
评论
0/150
提交评论