2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题含解析_第1页
2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题含解析_第2页
2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题含解析_第3页
2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题含解析_第4页
2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省宝鸡市凤县中学高一上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.2.已知函数则=()A. B.9C. D.3.函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m的取值范围是()A.(﹣∞,﹣3) B.(0,+∞)C.(3,+∞) D.(﹣∞,﹣3)∪(3,+∞)4.已知圆心在轴上的圆与直线切于点.若直线与圆相切,则的值为()A.9 B.7C.-21或9 D.-23或75.函数的图象大致是()A. B.C. D.6.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.47.函数零点所在的大致区间的A. B.C. D.8.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.9.设命题,则为A. B.C. D.10.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=①f(5)=______;②函数f(x)与函数y=(12.若是幂函数且在单调递增,则实数_______.13.设函数,若实数满足,且,则的取值范围是_______________________14.已知,则__________.15.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.16.某同学在研究函数

f(x)=(x∈R)

时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求,的值.18.黔东南州某银行柜台异地跨行转账手续费的收费标准为;转账不超过200元,每笔收1元:转账不超过10000元,每笔收转账金额的0.5%:转账超过10000元时每笔收50元,张黔需要在该银行柜台进行一笔异地跨行转账的业务.(1)若张黔转账的金额为x元,手续费为y元,请将y表示为x的函数:(2)若张黔转账的金额为10t-3996元,他支付的于练费大于5元且小了50元,求t的取值范围.19.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值20.已知分别是定义在上的奇函数和偶函数,且(1)求的解析式;(2)若时,对一切,使得恒成立,求实数的取值范围.21.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点(Ⅰ)求证:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B2、A【解析】根据函数的解析式求解即可.【详解】,所以,故选A3、C【解析】根据增函数的定义求解【详解】解:∵函数y=f(x)在R上为增函数,且f(2m)f(﹣m+9),∴2m﹣m+9,解得m3,故选:C4、D【解析】先求得圆的圆心和半径,根据直线若直线与圆相切,圆心到直线的距离等于半径列方程,解方程求得的值.【详解】圆心在轴上圆与直线切于点.可得圆的半径为3,圆心为.因为直线与圆相切,所以由切线性质及点到直线距离公式可得,解得或7.故选:D【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.5、B【解析】根据函数的奇偶性和正负性,运用排除法进行判断即可.【详解】因为,所以函数是偶函数,其图象关于纵轴对称,故排除C、D两个选项;显然,故排除A,故选:B6、D【解析】令则即当时,当时,则令,,由图得共有个点故选7、B【解析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.8、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.9、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.10、B【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【详解】由题,刍童的体积为立方丈【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键二、填空题:本大题共6小题,每小题5分,共30分。11、①.-14【解析】①根据函数解析式,代值求解即可;②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.【详解】①由题可知:f5②根据f(x)的解析式,在同一坐标系下绘制f(x)与y=(数形结合可知,两个函数有3个交点.故答案为:-14;12、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.13、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:14、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:315、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:16、①②③【解析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】分角为第三和第四象限角两种情况讨论,结合同角三角函数的基本关系可得解.【详解】因为,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,从而;如果是第四象限角,那么,.综上所述,当是第三象限角时,,;当是第四象限角时,,.【点睛】本题考查利用同角三角函数的基本关系求值,考查计算能力,属于基础题.18、(1)(2)【解析】(1)根据已知条件,写成分段函数,即可求解;(2)根据已知条件,结合指数函数的性质,即可求解【小问1详解】解:当时,,当时,,当时,,故;【小问2详解】解:从(1)中的分段函数得,如果张黔支付的手续费大于5元且小于50元,则转账金额大于1000元,且小于10000元,则只需要考虑当时的情况即可,由,所以,得,得,即实数t的取值范围是19、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.20、(1);(2)综上或【解析】(1)利用奇偶性构建方程组,解之即可;(2)恒成立等价于在恒成立(其中),令,讨论二次项系数,利用三个“二次”的关系布列不等式组即可.试题解析:(1)①,,分别是定义在上的奇函数和偶函数,②,由①②可知(2)当时,,令,即,恒成立,在恒成立.令(ⅰ)当时,(舍);(ⅱ)法一:当时,或或解得.法二:由于,所以或解得.(ⅲ)当时,,解得综上或点睛:研究不等式恒成立或存在型问题,首先要构造函数,然后研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.21、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)连接,推导出四边形是平行四边形,从而.再证出,.从而平面,同理平面,由此能证明平面平面(Ⅱ)推导出,,从而平面,,同理,由此能证明平面AB1D1,从而平面【详解】(Ⅰ)连接BC1,∵正方体ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴AD1∥BC1.又∵E,G分别是BC,CC1的中点,∴EG∥BC1,∴EG∥AD1.又∵EG⊄平面AB1D1,AD1⊂平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG⊂平面EFG,EF⊂平面EFG,∴平面AB1D1∥平面EFG.

(Ⅱ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论