版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
1
ModuleOne
Module01:IntroductiontoFinance
Topic1.1:WhatisFinancialManagement?
FinancialDecisions
Financialmanagementisconcernedwithdevelopinganalyticalskillstohelpmanagersmakebetterfinancialdecisions.Thesefinancialdecisionsare:
TheInvestmentDecision:Theevaluationofinvestmentprojects–whatprojectstoinvestin?Thisprocessissometimescalled“CapitalBudgeting”.
TheFinancingDecision:Wheretoobtainfundsfrom-Thetypeoffunds-Thecostoffunds-Whentoraisefunds-Howmuch?
TheDividendDecision:Increaseordecrease–howmuchtopayout-availabilityofcashtopayout–dividendsorcapitalgains.(TheDividendDecisionissometimesviewedaspartoftheFinancingDecisionandsometimesreferredtoasthePayoutDecision)
Theinvestment,financinganddividenddecisionsarelinkedbytheflowofcashthoughthefirm.Thesedecisionsareinterrelatedinthefollowingway:
CashInflows = CashOutflows
Themainsourcesoffundsarefromraisingnewcapitalbyborrowingorbytheissueofnewequity,andthenetcashflowsfromoperations.Sowedividethemintoexternalfundingandinternalfunding.Usesoffundsaredividedintoinvestmentsanddividends.
NewFunds + CashProfits = Investments + DividendF + X = I + D
ExternalFinancing[F]PlusInternalFinancing[X]=Investment[I]PlusDividend[D]
Where
F=externalfinancingviaeitherdebtorequity.
X=internalfinancingusingcashflowsgeneratedfrompreviousinvestments(retainedearnings).
I=cashoutlayforinvestmentsinassets,projects,etc.
D=cashdistributionstotheownersgenerallyintheformofdividends.
Bydefinition,cashinflowswillequalcashoutflowsforanytimeperiod.Wecannotchangeoneitemwithoutaffectingatleastoneotherintheequation.Thereforethedecisionsareinterrelatedandshouldbesolvedsimultaneously.
Considerthefollowingexample.Acompanyhasnetcashflowsfromoperationsof
$100m.Shareholderswereinformedthattheycouldexpectadividendtotalling$20minthisperiod.Thecurrentlevelofexternalfinancingiszerobutmanagementisnowinvestigatingaveryprofitableproject,whichneedsaninvestmentof$150m.
CashOutflowsare$150mininvestmentand$20mindividends.CashInflowsare$100mininternalfunding.
0+100m150m+20m
Thisisnotinbalance.Inflowstotal$100mandoutflowstotal$170m.Inordertomeetthecommitmentofacceptingtheprofitableinvestmentandpayingthedividendmanagementmustfindanextra$70minfunding.Theywillneedtoraisefundseitherbyborrowingorissuingnewequity.
TheFinanceFunction
SourceofFunds
Objectives
UseofFunds
Thefinancefunctioninvolvesthefinancialmanagerraisingfundsandusingthemtoaddvaluetothefirm.Sincemanagersendeavourtomakedecisionsthatincreasevaluetheyneedtoknowhowtomeasuretheimpactoftheirfinancialdecisionsonvalue.
Thecorrectdecisionscanonlybedeterminedinlightofthestatedobjectives.Toensuretheefficientandeffectivesourcingandutilisationoffunds,theobjectivesofthefirmmustbeconsidered.Inthisunitweadopttheobjectiveofmaximisingthemarketvalueofthefirm.Becarefulhere,maximisingaccountingprofitormaximisingreturnoninvestmentdoesnotalwaysmaximisevalue.Thispointwillbedemonstratedatvariouspointsthroughoutthecourse,especiallyinmodulefour.
Manyotherobjectivesofthefirmhavebeencanvassedintheliterature.Althoughthisisaninterestingissueitisnotonethatwewillpursueinthisunit.OneissuethatwillbecoveredbrieflyistheAgencyRelationship(seeSection1.5.8ofPBEHP.
TheConceptualFramework
ChapterTwoofyourtext,mostofwhichissetaslightreading,developsthetheoryofthefirmanddemonstrateshowwemightarriveatoptimalinvestment,financinganddividenddecisions.Thedecisionrulesderivedinthischapterareanessentialpartoftheconceptualframeworkoffinance.Soeventhoughwedonotstudythischapterindepthwerelyonitsconclusionsasastartingpointinourventureintotherealmoffinance.Themoreadventurousstudentsareinvitedtostudythischapterinmoredepth.
Insummary,thechapterconcludesthatundercertainrestrictiveconditions(perfectmarkets,perfectcertainty,notaxes,rationalinvestors,andnofrictions)thethreefinancialdecisionsareresolvedasfollows:
InvestmentDecisionSolution:
Takeallprojectsthataddvalue.StatedanotherwaythisgivesustheNetPresentValuerule,whichsaystakeallprojectsthathaveapositivenetpresentvalue(NPV)andrejectthosethathaveanegativenetpresentvalue.Analternateformistotakeallprojects,whichgiveareturngreaterthanthecostoffundsandrejectthosethatdonot.
FinancingDecisionSolution
Fundallprofitableprojects(allprojectsthataddvalue).Thesourceisirrelevant.Thatis,providedthatyouoptimisetheinvestmentdecisionbyfundingallprofitableinvestments,thequestionofwhereyoufinancefrom(debtvequity)makesnodifference.Ofcoursethisconclusionassumesthatweareoperatinginahighlycompetitivemarket.
DividendDecisionSolution
Providedthattheinvestmentandfinancingdecisionsareoptimisedthedividenddecision(dividendsvcapitalgains)isirrelevant.
ThesethreepoliciesarecoveredinChapter2ofthetext.
“Ifeverythingintherealworldoffinancewasthatsimplewecouldfinishourcourseinfinancehereandnow”Ihearyousay.
Myresponseis“yes,youareright”.
TheassumptionsusedinthemodeldevelopedinChapterTwoareveryrestrictiveanddonotreflecttherealworld.However,aswedevelopourconceptualframeworkwewillmovetomorecomplexmodels,whichprovidesolutionsthatareveryusefulandapplicabletotherealworldoffinance.Thereasonwestartwithasimplemodelissothatwecaneasilysee,whichvariablesorfactorsareimportant.Thiswillensurethatwearenotside-trackedintoaflawedanalysis.
Topic1.2The“FinancewayofThinking”andtheThreeLessonsofFinance
Thethemeofthisunitisthatbusinessesexisttocreatevalue.Ifafirmdoesnotcreatevaluecompetitionwillsoonforceitoutofbusiness.Weneedtoaddressquestionssuchas“Whatisvalueandhowisitcreated?".Inordertodothiswemustunderstandthethreebasicideasoffinancethatformtheconceptualframeworkandhelpusapplythe“FinancewayofThinking”
Thethreebasicideasare:
Timevalueofmoney
Arbitrage,and
Diversification
Throughoutourjourneyintothescience(orshouldIcallitthediscipline)offinancewewillregularlyreferbacktotheseideastohelpusresolveissuesandproblemsintheapplicationofourdiscipline.A“neat”explanationoftheseideascanbefoundonpage140ofRoss,Christensen,Drew,Thompson,WesterfieldandJordan,“FundamentalsofCorporateFinance”,2011,5thEdition,McGrawHill.
Thelogicissimple.Inanyvaluationprocesswewouldneedtoperformsomesortofcostbenefitanalysisinordertoseeifsomeactionaddsvalue.
Calculate/forecastthebenefits
Calculate/forecastthecosts
Comparethetwo
Ifbenefitsexceedthecoststheactionaddsvalue
Itiscontendedherethatbeforethecostsandbenefitscanbeevaluatedproperly,timevalueofmoney,arbitrageanddiversificationmustbeconsidered.
Beforemovingontothesethreebasicideas,herearesomedefinitionsandconcepts.
“FinanceHat”
Infinanceandeconomicsweuseadifferentmeasureofprofitfromthatusedinotherdisciplines.Thoseofyouwhohaveworkedorstudiedaccountingand/ortaxationwillneedtoadjustyourwayofthinkingbeforesolvingfinancialproblems.
Whendoingaccountingworkputonyour“AccountingHat”Whendoingtaxputonyour“TaxationHat”
Whensolvingfinanceproblemsputonyour“FinanceHat”Agoodexampleisdepreciation:
Infinancewedonotincludedepreciationasacostinourcost/benefitanalysisbecauseitisnotconsideredtobearelevantcashflowforvaluationpurposes.The
initialcostofourinvestment(asset)isconsideredasanupfrontcashflowratherthanacosttobeapportioned(depreciated)overthelifeoftheasset.
Inaccountingdepreciationisincludedasacosttobedeductedfromrevenuetogettheprofitfigure.
Fortaxationpurposes,depreciationiscommonlyanallowablededuction.However,theamountallowablemaydiffersignificantlyfromthatusedforaccountingpurposesandfromthedeclineineconomicvalueoftheasset.
Anotherexampleistherecognitionofcapitalgains.Foraccountingandtaxationpurposesacapitalgainisnotrecogniseduntilrealised(untiltheassetissold).Infinancewerecogniseacapitalgain(orloss)assoonasachangeinvalueoccurs.
Theunderstandingoffinancerequiresalittlebitof“lateralthinking”onyourpart.Youwillcomeacrosstransactionsthatdonotappeartomakesensetothe“layperson”.Agoodexampleissellingsomethingthatyoudonothave–“goingshort”.Iwillleavetheexplanationofthistransactiontoalaterstageinthisunit.
Activity1.1
Lookupshortsellingandbepreparedtodiscussthesignificanceofthistransactioninclassnextweek.Try
.
Return
Infinanceweviewreturnsorprofitsasbeingmadeupoftwoparts:
Acashflowstream–normallyadividend,rentorinterestpayment,and
Acapitalgainorlossfromtheincreaseordecreaseinvalue.
Againdifferentapproachesareusedtomeasureprofitdependingonwhetherwearemeasuringeconomicreturns,accountingprofitortaxableincome.
Hereisanexampleofthecalculationofreturn.SupposewepurchasedashareinTelstraatthebeginningoftheyearfor$3.40.Weholdtheshareforoneyearanditspricerisesto$4.45attheendoftheyear.Duringtheyearwereceivedadividendof55cents.Wedonotselltheshare,asitisourintentiontoholditforafewyears.
Ourreturnismadeupof55centsindividendsand$1.05incapitalgain.Eventhoughwehavenotsoldtheshare,infinancewerecognisethecapitalgain.Contrastthiswiththeaccountingandtaxationpositions,whichdonotrecogniseacapitalgainuntilitisrealised(i.e.theshareissold).
Thetotaldollarreturnis$1.60.Tocalculatetheannualreturnasapercentagewedividethedollarreturnbythepriceatthebeginningoftheperiodinquestion.Inthiscasethepricewas$3.40.
Returnequals1.60/3.40giving47.06%pa.Thatwouldbenice,wouldn’tit?
Thisexamplemeasuresthehistoricoractualreturn.Wecanalsoconsiderreturninaforwardlookingsense.ForexampleifwebuyashareinBHPtodaywiththeintentionofholdingitforoneyear,whatreturncanweexpecttomakeovertheyear(expectedreturn)?OnewaywouldbetoprojectthepriceforBHPattheendoftheyearandmeasurethereturnasapercentageincrease.
Formulawithoutdividends
rC1C0
C0
Formulawithdividends
rC1D1C0
C0
Where:
r=return
C0=cashfloworvalueatthebeginningoftheperiodC1=cashfloworvalueatendofperiod
D1=dividendpaidatendofperiod
WealsomakethedistinctionbetweenNominalReturnsandRealReturns.SeeSection1.5.4ofPBEHP.
Activity1.2
Lookupthedefinitionsofnominalinterestratesandrealinterestratesandbepreparedtodiscusstheirrelationshiptoexpectedinflationinclass.
MarketValues
Anotherdifferenceisthatinfinanceweusemarketvalueswhereverpossibleinpreferencetobookvalues.
Thefollowingequalitywillbecommonlyreferredto:A = E + D
or
V = E + D
Themarketvalueofthefirm’sassetsisequaltothemarketvalueofthefirm’sequityplusthemarketvalueofthefirm’sdebt.
ThoseofyouthathavestudiedaccountingwillrecognisethisequationasbeingsimilartotheAccountingEquationusedinelementaryaccounting.Themajordifferenceisthatinfinanceweusecurrentmarketvalues,whereasaccountinguseshistoricorbookvalues(originalcost).
TimeValueofMoney
AssumethatyourfirmisinvestigatinganoilandgasprojectontheNorthWestShelfwiththefollowingsetofcashflows(inbillions$):
Year
0
1
2
3
…
25
CashFlow
(10)
1.0
1.0
1.0
1.0
1.0
Theprojectrequiresanoutlayof$10billionnow(time0)andpromisestogivecashflowreturnsof$1.0billionattheendofeachyearfor25years.Assumethatinvestorsinthemarketrequireareturnof10%paforthistypeofproject(thisrateissometimesreferredtoasthe“opportunitycostsoffunds”or“thecostofcapital”).
IfthenumbersarefamiliaritisbecausetheexampleisbasedonthesaleofgasfromtheNorthWestShelf(NWS)toChina,announcedinabout2002.Thenumbersarefictitious.
Shouldthefirmaccepttheproject?
Weaskthequestion,“Doestheprojectaddvaluetothefirm”?
Asimpleapproachwouldbetocomparethecostswiththebenefits.Costs: $10billion
Benefits: $25billion(25yearsat$1billion)Netbenefit: $25b–$10b=$15billionprofit
Thatshouldpaysomehandsomesalaries;buyafewFerraris,severalbeachfrontvillas,asuperyacht,aprivatejet,theoddtriptothemoonandrealestateonMars.
Unfortunately,ifyouannouncedthatyourfirmwastakingthisproject,thevalueofyourshareswouldfall.
Thereasonisthatyouhaveignoredthetimevalueofmoneyandtheopportunitycostoffunds.Animportantcosthasbeenomitted.Youarecomparing“appleswithoranges”.
NetPresentValue
InfinanceweevaluatesuchprojectsbycalculatingtheNPV(NetPresentValue)acost/benefitanalysis,whichatthesametimeadjustsforthetimevalueofmoney.
NPV=-InitialInvestment+thesumofthepresentvaluesofallfuturecashflows.
NPVInitialInvestment
CFt
t11it
Wedothecalculationusingtheformulaabove;moreaboutthislaterintheunit(Module04).
AtthisstageacceptmywordthattheNPVofourprojectis:
-$10b+$9.08b=-$0.92bThatis,thecostsequal$10b.
Thepresentvalueofthebenefitsis$9.08b.Afteradjustingforthetimevalueofmoneyattenpercent,$1bperyearfor25yearsisworth(equivalentto)only$9.08battimezero(now).
Overallthenetbenefitisnegative,andtheprojectwouldthereforecauseadropinvalueifitweretobeaccepted.
IfNPVmeasureschangeinvalue,thissuggestsarulefortheinvestmentdecision.ThefirmshouldtakeallprojectswithapositiveNPVandrejectallprojectswithanegativeNPV.Soundsfamiliar,thisiscalledtheNPVrule.
Arbitrage
Twoassetswiththesameriskandwhichproducethesamecashflowsshouldhavethesamevalue.Financialmarketsarehighlycompetitive.Therearemillions(perhapsbillions)ofinvestorsandplayersinthemarketlookingforprofitableopportunities.Iftwoassetswiththesamecashflowswerevalueddifferentlythenanopportunitytoprofitwithzeroriskwouldarise.Tradingonthistypeofopportunityisreferredtoasarbitrage.Arbitragewillquicklybringtheassetvaluesintobalance.
Takethisverysimpleexample.SupposethatatthesamepointintimeyounoticedthatsharesinBHPweresellingfor$A14inSydneyandat$A20inNewYork.Couldyouarbitragethis?
Yes!“Youbeauty,amoneymachine”!
YouwouldsimultaneouslybuyinSydneyat$14andsellinNewYorkfor$20,making$6profitpersharesoldlessthecostoftransacting.Ofcourseifthisimbalanceweretooccur,itwouldnotlastforlong,becauseeveryoneelseinthemarketwouldattempttoarbitrage.Thepriceswouldveryquicklycomebackintobalance.
Arbitrageisaverypowerfulideaandhasmanyapplicationsinvaluation.Giventhataddingvalueisthenameofthegame,weneedtounderstandhowcompetitivemarketsbehave.
Diversification
Wehaveallheardthehomily“donotputallyoureggsinonebasket,(lestthebasketfallandyoubreakallyoureggsatonce)”orsomethingtothateffect.Thisisgoodadviceintheworldoffinance.Giventhatmost,ifnotallinvestorsareriskaverse,itpaystodiversify.
Diversificationprovidesthepotentialtoreduceriskwithoutdecreasingreturns.Thefollowinggraphdemonstratesthis.Wemeasurethetotalriskofaninvestmentusingthestandarddeviationofexpectedreturns.Itturnsoutthatsomeofthistotalriskisdiversifiableandcanberemoved.Thiscomponentisreferredtoasdiversifiablerisk(orasnon-systematicrisk).
Noofassets
Keepingreturnconstant
systematicrisk
unsystematicrisk
TotalRisk
Diversification
TOTALRISK=SYSRISK+UNSYSRISK
Asweaddmoreandmoreassetstoourportfoliototalriskreduces(followtheblueline).But,notethatitdoesnotfullydisappear.Thereissomeresidualriskleft.Thisisreferredtoassystematicriskornon-diversifiablerisk.Giventhatthisriskcannot
PAGE
10
ModuleOne
bediversifiedaway,riskaverseinvestorswillwanttobecompensatedforsystematicrisk.
Thefactthat(intherealworld)investmentsarenotallperfectlycorrelatedwitheachother,allowsriskreductionviadiversification.Riskaverseinvestorsseektoavoidriskandiftheycannot,theywishtobecompensatedforit.
Thehigherthesystematicriskthehigherthereturnrequiredtocompensateforthatrisk.JustconsiderAustraliangovernmentbonds.Thesearefairlysafe(almostriskfree)andprovideareturn(yield)ofabout4%pa.Wouldyoutakeonariskyinvestmentthatproducedonly4%pa?
No!Youcanmake4%withnoriskbyputtingyourmoneyingovernmentbonds.
Activity1.3
Lookupthecurrentrate(yield)forten-yeargovernmentbondsinthenewspaperandbepreparedtodiscussthesignificanceofthisnumberinclass.
Topic1.3TimeValueofMoneyandtheMathematicsofFinance
Moneyhasatimevalue,andisgenerallyexpressedintermsofitsreceiptwithearlierreceiptsbeingbetterthanlaterones.Eveniftherewerezeroinflation,mostpeoplewouldprefertohave$1000intheirpocketnow,ratherthaninoneyear’stime.
Followingthislineofreasoning,itislogicalthatifapersonistoreceiveaseriesofcashflowsondifferentdates,thevalueofthosecashflowscannotbecalculatedsimplybyaddingthem.Thevalueof$1000receivedtoday,plus$1000tobereceivedattheendoftheyearplus$1000tobereceivedattheendoftwoyears,isnot
$3000,butisalesseramount.
Acashflowline
Thisexamplecanbedepictedusingthefollowingdiagramorsomevariationofit.Itisagoodideatodrawsomesortofdiagramtodepicttheproblemathand.Thishelpsthestudenttovisualisetheproblemandassistsinthesolution.Herewehaveusedacashflowline.
0 1 2 3
1000 1000 1000
Thisseriesofcashflowswhenaddedtogethergiveatotalof$3000,buttheyarenotworth$3000now.Whataretheyworth?
Thevalueisgivenbythefollowingformula:
PresentValue10001000
1000
(1r) (1r)2
Where“r”istheinterestrateexpressedasadecimal.Thevaluewillalwaysbelessthan$3000(iethesumofthecashflows).
Ifr=10%thenthepresentvalueis$2735.54.
PresentValue100010001000
(1.1) (1.1)2
Anotherfactorrelatingtotheutilityofmoneyisrisk.Anamountof$110,000inthefuturemayseemmoreusefulthananamountof$100,000today,butwhatisthelikelihoodofreceivingthatmoney?Othereventscouldtakeplacethatcouldmeanthatapersonreceivednothinginthefuture,butcouldhaveenjoyedthe$100,000today.Withmoney,thereisprobablynosuchthingascertainty.Therearedifferentratesofreturnanddifferentlevelsofrisksfordifferenttypesofinvestment,buta
commondenominatoristhatthegreaterthereturnoninvestment,thegreatertheriskingettingthatreturn-moreaboutthislaterintheunit.
Soweneedtoadjustfortimevalueofmoney.Howdowedothis?WeuseaseriesofcalculationsthatcomeundertheheadingofFinancialMathematics.Financialmathematicsincludesthewiderangeofcalculationsthatunderliethemulti-trilliondollarfinanceindustry.
Herearesomefundamentalconceptsunderpinningfinancialmathematics:
Cashflows–Payments(outflows)orreceipts(inflows)ofmoney(cash)–outflowsareshownasnegativeusingeitheraminussignorbrackets;
Rateofreturn–Therelationshipbetweenthecashinflowsandcashoutflows;
Marketyieldorrate–therateofreturnoryieldwhichequatesthefuturecashflowswiththepriceofthefinancialinstrumentinquestion(establishedbymarketforces);
Timingconvention(cashflowsareassumedtooccuratapointintime,witht=0representingnow,andt=1representingtheendofthefirsttimeperiod,t=2endofsecondtimeperiod,andsoon;
Couponrate–Thecontractedrateofpaymentondebtandotherfinancialinstruments;
Financialcontracts–whereamountstobereceivedandtobepaidareagreed.
Theseareadequatelycoveredinthetext.
Financialanalysisanddecisionmakingrequiresacompetentunderstandingandapplicationoffinancialmathematics.Studentsshouldrefertothetexttocompiletheirownlistofformulasusedinfinancialmathematicsasappliedinthisunit.Itshouldbenotedthatdifferenttextbooks(anddifferentlecturers)useslightlydifferentwaysofexpressingtheseformulas–thereisnostandardisation,andstudentsneedtodeveloptheirownexpressionsorbecomefamiliarwiththeformulasprovidedbytheteacherforexampurposes.
Studentsshouldbecarefulwhencompilingthislist,asfontsusedbydifferentcomputers,versionsofsoftware,andprinterdrivers,torepresenttheformulasina“wordprocessed”documentmaynotalwaysbereliablyreproduced.
Asummaryoftheformulasusedinthesenotesmaybefoundattheendofeachmodule.
Inthisunit,attentionisgiventothefollowingcalculations:
Return(coveredabove)
SimpleInterest
CompoundInterest
PresentValue
FutureValue
EffectiveInterestRates
PresentandFutureValuesofAnnuities
PresentValueofPerpetuities
PresentValueofGrowingPerpetuities
Thefirstfiveitemsarecoveredinthismodule.TheothersareintroducedhereandcoveredindepthinModuleTwo.
Thefollowingsymbolswillbeusedthroughoutthematerialthatfollows:NPV=netpresentvalue
V=valueofthefirm
D=valueofdebt
E=valueofequityr=requiredreturn
C0=cashfloworvalueattime0C1=cashfloworvalueattime1CFt=cashflowattimet
D1=dividendattime1
FV=futurevalueoraccumulatedamountPV=presentvalueorprincipal
i=interestrate(youmayfind“r”and“k”alsobeinguseddependingonthecontext)n=numberoftimeperiods
t=timeperiodrangingfromt=0tot=n
jm=nominalannualratecompounded“m”timesperyearEAR=effectiveannualrate
Inthesenotesformulaswillbeprovidedwithoutproofs.Thosewithamathematicalbentmayliketocheckthederivationofalloftheformulasandsolvetheequationsfordifferentsituations.Thiswillhelpyouunderstandwhatyouaredoing.Theminimumrequirementisthatyouareabletosolvetheseproblemsusingaformulaandacalculator.Thetextbookhastablesatthebacktoassistwithcalculations.Studentsneedtobecompetentintheoperationsofthefinancialcalculatorsufficientlywelltobeabletoquicklycalculatetheanswerinanexam.
Studentsareencouragedtolearntousetheirfinancialcalculatorsasquicklyaspossible,andarepermittedtobringthemintotheexam.YoushouldalsolearnhowtodothesecalculationsusingthefinancialfunctionsinExcel.AsaguideastotestwhetheryouhaveyouhavemasteredthistopicyoushouldbeabletodoallofthequestionsatthebackofChapterThreeofthetextbookwithoutlookingatthesolutions.
SimpleInterest:SeeSection3.3ofPBEHP
Simpleinterestiswhereinterestovertheentireperiodoftheagreementorloaniscalculatedontheoriginalamountofprincipal.Thisisinfrequentlyusednowadaysincommercialsituations,butoftenformsthebasisofprivatefamilyloansandlessformalagreements.
Theformulais:
FV=PV(1+in)
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pasimpleinterest?
Solution:
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+in)
FV=1000(1+.1x2)=1000(1.2)=1200
Fromnowonyouassumethatacompoundinterestcalculationisrequiredunlessspecificallyinstructedotherwise.
CompoundInterest:SeeSection3.4ofPBEHP
Interestoninterest.Compoundinterestiswhereinterestiscalculatedeachperiodontheprincipalamountandonanyaccruedinteresttothatpointintime.Thisiscommonlyusedforloansandinvestments.Itisimportanttoknowthefrequencyofcompoundingaswellasthestatedinterestrate,asthiscanhaveahugeimpactonbothperiodicrepaymentsorreceiptsandthetotalamountpaidovertheperiodoftheagreement.Note:Whenthereisonlyonecompoundingperiodthenbothsimpleinterestandcompoundinterestapproachesproducethesameresult.
Theformulais:
FV=PV(1+i)n
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pacompoundedannual?
Solution:
Compoundedannually,meansthatinterestisaddedtotheaccountattheendofeachyear.
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+i)n
FV=1000(1.1)2=1000x1.21=$1210
NominalversusEffectiveRates(nottobeconfusedwithNominalvReal)
Itisalsoimportanttounderstandthedifferencebetweennominalandeffectiveinterestrateswhencalculatingeitherrepaymentsorreceipts,astheeffectiveinterestrateistheonethattakesaccountofthefrequencyofthecompounding.Thetotalamountofinterestpaidorreceivedisgreaterasthenumberofcompoundingperiodsisincreased.Inpracticeitisusualtoquotethenominalinterestrate.Forexample,myhousingloanhasaninterestrateof6%pa.Butthebankchargesinterestonamonthlybasis(thatistheyaddinteresttomyaccounteverymonth).Theeffectiveannualrateforthisloanis6.17%.Accuratetoonebasispoint.
Thecalculationoftheeffectiveinterestrateshouldbeusedbeforecomparingdifferentloansorinvestmentproductswithdifferentnominalinterestratesanddifferentcompoundingperiods.HerewewillcallthisratetheEffectiveAnnualRate(EAR).[AER=AnnualEffectiveRateisalsocommonusage]
Theformulais:
jm
EAR1m1
m
Example:
Polybankoffersabankcardfacility(Polycard)toitscustomersandadvertisesarateof18%pabutwiththeinterestaddedtotheaccounteverymonth.WhateffectiveannualrateisPolybankchargingitscustomers?
Solution:
jm=.18(18%)
m=12(monthly)
.1812
12
EAR1 1
EAR=19.56%
(SeeSection
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医生聘用期间个人工作总结(13篇)
- 药物滥用社会工作干预-洞察分析
- 网络舆论心理分析-第1篇-洞察分析
- 戏剧剧本创作-洞察分析
- 信托法司法解释解读-洞察分析
- 医院个人一岗双责廉洁工作总结(6篇)
- 《涂装工程》课件
- 《家庭系统排列讲座》课件
- 办公室文化与家庭教育的融合实践
- 医学背景下的数学基础教育研究
- GB/T 44978-2024智慧城市基础设施连接城市和城市群的快速智慧交通
- 中级计量经济学知到智慧树章节测试课后答案2024年秋浙江工业大学
- 教科版二年级上册科学期末试卷及答案
- 2024年保密工作履职报告
- 幼儿园班级幼儿图书目录清单(大中小班)
- (高清版)JGT 225-2020 预应力混凝土用金属波纹管
- 中国地理(广州大学)智慧树知到期末考试答案章节答案2024年广州大学
- 2024浙江省旅游投资集团总部管理人员招聘笔试参考题库附带答案详解
- 贵州省黔东南州2022-2023学年八年级上学期期末文化水平测试数学试卷(含答案)
- 钢筋统计表(插图有尺寸)
- 《办公自动化》课程标准
评论
0/150
提交评论