版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
1
ModuleOne
Module01:IntroductiontoFinance
Topic1.1:WhatisFinancialManagement?
FinancialDecisions
Financialmanagementisconcernedwithdevelopinganalyticalskillstohelpmanagersmakebetterfinancialdecisions.Thesefinancialdecisionsare:
TheInvestmentDecision:Theevaluationofinvestmentprojects–whatprojectstoinvestin?Thisprocessissometimescalled“CapitalBudgeting”.
TheFinancingDecision:Wheretoobtainfundsfrom-Thetypeoffunds-Thecostoffunds-Whentoraisefunds-Howmuch?
TheDividendDecision:Increaseordecrease–howmuchtopayout-availabilityofcashtopayout–dividendsorcapitalgains.(TheDividendDecisionissometimesviewedaspartoftheFinancingDecisionandsometimesreferredtoasthePayoutDecision)
Theinvestment,financinganddividenddecisionsarelinkedbytheflowofcashthoughthefirm.Thesedecisionsareinterrelatedinthefollowingway:
CashInflows = CashOutflows
Themainsourcesoffundsarefromraisingnewcapitalbyborrowingorbytheissueofnewequity,andthenetcashflowsfromoperations.Sowedividethemintoexternalfundingandinternalfunding.Usesoffundsaredividedintoinvestmentsanddividends.
NewFunds + CashProfits = Investments + DividendF + X = I + D
ExternalFinancing[F]PlusInternalFinancing[X]=Investment[I]PlusDividend[D]
Where
F=externalfinancingviaeitherdebtorequity.
X=internalfinancingusingcashflowsgeneratedfrompreviousinvestments(retainedearnings).
I=cashoutlayforinvestmentsinassets,projects,etc.
D=cashdistributionstotheownersgenerallyintheformofdividends.
Bydefinition,cashinflowswillequalcashoutflowsforanytimeperiod.Wecannotchangeoneitemwithoutaffectingatleastoneotherintheequation.Thereforethedecisionsareinterrelatedandshouldbesolvedsimultaneously.
Considerthefollowingexample.Acompanyhasnetcashflowsfromoperationsof
$100m.Shareholderswereinformedthattheycouldexpectadividendtotalling$20minthisperiod.Thecurrentlevelofexternalfinancingiszerobutmanagementisnowinvestigatingaveryprofitableproject,whichneedsaninvestmentof$150m.
CashOutflowsare$150mininvestmentand$20mindividends.CashInflowsare$100mininternalfunding.
0+100m150m+20m
Thisisnotinbalance.Inflowstotal$100mandoutflowstotal$170m.Inordertomeetthecommitmentofacceptingtheprofitableinvestmentandpayingthedividendmanagementmustfindanextra$70minfunding.Theywillneedtoraisefundseitherbyborrowingorissuingnewequity.
TheFinanceFunction
SourceofFunds
Objectives
UseofFunds
Thefinancefunctioninvolvesthefinancialmanagerraisingfundsandusingthemtoaddvaluetothefirm.Sincemanagersendeavourtomakedecisionsthatincreasevaluetheyneedtoknowhowtomeasuretheimpactoftheirfinancialdecisionsonvalue.
Thecorrectdecisionscanonlybedeterminedinlightofthestatedobjectives.Toensuretheefficientandeffectivesourcingandutilisationoffunds,theobjectivesofthefirmmustbeconsidered.Inthisunitweadopttheobjectiveofmaximisingthemarketvalueofthefirm.Becarefulhere,maximisingaccountingprofitormaximisingreturnoninvestmentdoesnotalwaysmaximisevalue.Thispointwillbedemonstratedatvariouspointsthroughoutthecourse,especiallyinmodulefour.
Manyotherobjectivesofthefirmhavebeencanvassedintheliterature.Althoughthisisaninterestingissueitisnotonethatwewillpursueinthisunit.OneissuethatwillbecoveredbrieflyistheAgencyRelationship(seeSection1.5.8ofPBEHP.
TheConceptualFramework
ChapterTwoofyourtext,mostofwhichissetaslightreading,developsthetheoryofthefirmanddemonstrateshowwemightarriveatoptimalinvestment,financinganddividenddecisions.Thedecisionrulesderivedinthischapterareanessentialpartoftheconceptualframeworkoffinance.Soeventhoughwedonotstudythischapterindepthwerelyonitsconclusionsasastartingpointinourventureintotherealmoffinance.Themoreadventurousstudentsareinvitedtostudythischapterinmoredepth.
Insummary,thechapterconcludesthatundercertainrestrictiveconditions(perfectmarkets,perfectcertainty,notaxes,rationalinvestors,andnofrictions)thethreefinancialdecisionsareresolvedasfollows:
InvestmentDecisionSolution:
Takeallprojectsthataddvalue.StatedanotherwaythisgivesustheNetPresentValuerule,whichsaystakeallprojectsthathaveapositivenetpresentvalue(NPV)andrejectthosethathaveanegativenetpresentvalue.Analternateformistotakeallprojects,whichgiveareturngreaterthanthecostoffundsandrejectthosethatdonot.
FinancingDecisionSolution
Fundallprofitableprojects(allprojectsthataddvalue).Thesourceisirrelevant.Thatis,providedthatyouoptimisetheinvestmentdecisionbyfundingallprofitableinvestments,thequestionofwhereyoufinancefrom(debtvequity)makesnodifference.Ofcoursethisconclusionassumesthatweareoperatinginahighlycompetitivemarket.
DividendDecisionSolution
Providedthattheinvestmentandfinancingdecisionsareoptimisedthedividenddecision(dividendsvcapitalgains)isirrelevant.
ThesethreepoliciesarecoveredinChapter2ofthetext.
“Ifeverythingintherealworldoffinancewasthatsimplewecouldfinishourcourseinfinancehereandnow”Ihearyousay.
Myresponseis“yes,youareright”.
TheassumptionsusedinthemodeldevelopedinChapterTwoareveryrestrictiveanddonotreflecttherealworld.However,aswedevelopourconceptualframeworkwewillmovetomorecomplexmodels,whichprovidesolutionsthatareveryusefulandapplicabletotherealworldoffinance.Thereasonwestartwithasimplemodelissothatwecaneasilysee,whichvariablesorfactorsareimportant.Thiswillensurethatwearenotside-trackedintoaflawedanalysis.
Topic1.2The“FinancewayofThinking”andtheThreeLessonsofFinance
Thethemeofthisunitisthatbusinessesexisttocreatevalue.Ifafirmdoesnotcreatevaluecompetitionwillsoonforceitoutofbusiness.Weneedtoaddressquestionssuchas“Whatisvalueandhowisitcreated?".Inordertodothiswemustunderstandthethreebasicideasoffinancethatformtheconceptualframeworkandhelpusapplythe“FinancewayofThinking”
Thethreebasicideasare:
Timevalueofmoney
Arbitrage,and
Diversification
Throughoutourjourneyintothescience(orshouldIcallitthediscipline)offinancewewillregularlyreferbacktotheseideastohelpusresolveissuesandproblemsintheapplicationofourdiscipline.A“neat”explanationoftheseideascanbefoundonpage140ofRoss,Christensen,Drew,Thompson,WesterfieldandJordan,“FundamentalsofCorporateFinance”,2011,5thEdition,McGrawHill.
Thelogicissimple.Inanyvaluationprocesswewouldneedtoperformsomesortofcostbenefitanalysisinordertoseeifsomeactionaddsvalue.
Calculate/forecastthebenefits
Calculate/forecastthecosts
Comparethetwo
Ifbenefitsexceedthecoststheactionaddsvalue
Itiscontendedherethatbeforethecostsandbenefitscanbeevaluatedproperly,timevalueofmoney,arbitrageanddiversificationmustbeconsidered.
Beforemovingontothesethreebasicideas,herearesomedefinitionsandconcepts.
“FinanceHat”
Infinanceandeconomicsweuseadifferentmeasureofprofitfromthatusedinotherdisciplines.Thoseofyouwhohaveworkedorstudiedaccountingand/ortaxationwillneedtoadjustyourwayofthinkingbeforesolvingfinancialproblems.
Whendoingaccountingworkputonyour“AccountingHat”Whendoingtaxputonyour“TaxationHat”
Whensolvingfinanceproblemsputonyour“FinanceHat”Agoodexampleisdepreciation:
Infinancewedonotincludedepreciationasacostinourcost/benefitanalysisbecauseitisnotconsideredtobearelevantcashflowforvaluationpurposes.The
initialcostofourinvestment(asset)isconsideredasanupfrontcashflowratherthanacosttobeapportioned(depreciated)overthelifeoftheasset.
Inaccountingdepreciationisincludedasacosttobedeductedfromrevenuetogettheprofitfigure.
Fortaxationpurposes,depreciationiscommonlyanallowablededuction.However,theamountallowablemaydiffersignificantlyfromthatusedforaccountingpurposesandfromthedeclineineconomicvalueoftheasset.
Anotherexampleistherecognitionofcapitalgains.Foraccountingandtaxationpurposesacapitalgainisnotrecogniseduntilrealised(untiltheassetissold).Infinancewerecogniseacapitalgain(orloss)assoonasachangeinvalueoccurs.
Theunderstandingoffinancerequiresalittlebitof“lateralthinking”onyourpart.Youwillcomeacrosstransactionsthatdonotappeartomakesensetothe“layperson”.Agoodexampleissellingsomethingthatyoudonothave–“goingshort”.Iwillleavetheexplanationofthistransactiontoalaterstageinthisunit.
Activity1.1
Lookupshortsellingandbepreparedtodiscussthesignificanceofthistransactioninclassnextweek.Try
.
Return
Infinanceweviewreturnsorprofitsasbeingmadeupoftwoparts:
Acashflowstream–normallyadividend,rentorinterestpayment,and
Acapitalgainorlossfromtheincreaseordecreaseinvalue.
Againdifferentapproachesareusedtomeasureprofitdependingonwhetherwearemeasuringeconomicreturns,accountingprofitortaxableincome.
Hereisanexampleofthecalculationofreturn.SupposewepurchasedashareinTelstraatthebeginningoftheyearfor$3.40.Weholdtheshareforoneyearanditspricerisesto$4.45attheendoftheyear.Duringtheyearwereceivedadividendof55cents.Wedonotselltheshare,asitisourintentiontoholditforafewyears.
Ourreturnismadeupof55centsindividendsand$1.05incapitalgain.Eventhoughwehavenotsoldtheshare,infinancewerecognisethecapitalgain.Contrastthiswiththeaccountingandtaxationpositions,whichdonotrecogniseacapitalgainuntilitisrealised(i.e.theshareissold).
Thetotaldollarreturnis$1.60.Tocalculatetheannualreturnasapercentagewedividethedollarreturnbythepriceatthebeginningoftheperiodinquestion.Inthiscasethepricewas$3.40.
Returnequals1.60/3.40giving47.06%pa.Thatwouldbenice,wouldn’tit?
Thisexamplemeasuresthehistoricoractualreturn.Wecanalsoconsiderreturninaforwardlookingsense.ForexampleifwebuyashareinBHPtodaywiththeintentionofholdingitforoneyear,whatreturncanweexpecttomakeovertheyear(expectedreturn)?OnewaywouldbetoprojectthepriceforBHPattheendoftheyearandmeasurethereturnasapercentageincrease.
Formulawithoutdividends
rC1C0
C0
Formulawithdividends
rC1D1C0
C0
Where:
r=return
C0=cashfloworvalueatthebeginningoftheperiodC1=cashfloworvalueatendofperiod
D1=dividendpaidatendofperiod
WealsomakethedistinctionbetweenNominalReturnsandRealReturns.SeeSection1.5.4ofPBEHP.
Activity1.2
Lookupthedefinitionsofnominalinterestratesandrealinterestratesandbepreparedtodiscusstheirrelationshiptoexpectedinflationinclass.
MarketValues
Anotherdifferenceisthatinfinanceweusemarketvalueswhereverpossibleinpreferencetobookvalues.
Thefollowingequalitywillbecommonlyreferredto:A = E + D
or
V = E + D
Themarketvalueofthefirm’sassetsisequaltothemarketvalueofthefirm’sequityplusthemarketvalueofthefirm’sdebt.
ThoseofyouthathavestudiedaccountingwillrecognisethisequationasbeingsimilartotheAccountingEquationusedinelementaryaccounting.Themajordifferenceisthatinfinanceweusecurrentmarketvalues,whereasaccountinguseshistoricorbookvalues(originalcost).
TimeValueofMoney
AssumethatyourfirmisinvestigatinganoilandgasprojectontheNorthWestShelfwiththefollowingsetofcashflows(inbillions$):
Year
0
1
2
3
…
25
CashFlow
(10)
1.0
1.0
1.0
1.0
1.0
Theprojectrequiresanoutlayof$10billionnow(time0)andpromisestogivecashflowreturnsof$1.0billionattheendofeachyearfor25years.Assumethatinvestorsinthemarketrequireareturnof10%paforthistypeofproject(thisrateissometimesreferredtoasthe“opportunitycostsoffunds”or“thecostofcapital”).
IfthenumbersarefamiliaritisbecausetheexampleisbasedonthesaleofgasfromtheNorthWestShelf(NWS)toChina,announcedinabout2002.Thenumbersarefictitious.
Shouldthefirmaccepttheproject?
Weaskthequestion,“Doestheprojectaddvaluetothefirm”?
Asimpleapproachwouldbetocomparethecostswiththebenefits.Costs: $10billion
Benefits: $25billion(25yearsat$1billion)Netbenefit: $25b–$10b=$15billionprofit
Thatshouldpaysomehandsomesalaries;buyafewFerraris,severalbeachfrontvillas,asuperyacht,aprivatejet,theoddtriptothemoonandrealestateonMars.
Unfortunately,ifyouannouncedthatyourfirmwastakingthisproject,thevalueofyourshareswouldfall.
Thereasonisthatyouhaveignoredthetimevalueofmoneyandtheopportunitycostoffunds.Animportantcosthasbeenomitted.Youarecomparing“appleswithoranges”.
NetPresentValue
InfinanceweevaluatesuchprojectsbycalculatingtheNPV(NetPresentValue)acost/benefitanalysis,whichatthesametimeadjustsforthetimevalueofmoney.
NPV=-InitialInvestment+thesumofthepresentvaluesofallfuturecashflows.
NPVInitialInvestment
CFt
t11it
Wedothecalculationusingtheformulaabove;moreaboutthislaterintheunit(Module04).
AtthisstageacceptmywordthattheNPVofourprojectis:
-$10b+$9.08b=-$0.92bThatis,thecostsequal$10b.
Thepresentvalueofthebenefitsis$9.08b.Afteradjustingforthetimevalueofmoneyattenpercent,$1bperyearfor25yearsisworth(equivalentto)only$9.08battimezero(now).
Overallthenetbenefitisnegative,andtheprojectwouldthereforecauseadropinvalueifitweretobeaccepted.
IfNPVmeasureschangeinvalue,thissuggestsarulefortheinvestmentdecision.ThefirmshouldtakeallprojectswithapositiveNPVandrejectallprojectswithanegativeNPV.Soundsfamiliar,thisiscalledtheNPVrule.
Arbitrage
Twoassetswiththesameriskandwhichproducethesamecashflowsshouldhavethesamevalue.Financialmarketsarehighlycompetitive.Therearemillions(perhapsbillions)ofinvestorsandplayersinthemarketlookingforprofitableopportunities.Iftwoassetswiththesamecashflowswerevalueddifferentlythenanopportunitytoprofitwithzeroriskwouldarise.Tradingonthistypeofopportunityisreferredtoasarbitrage.Arbitragewillquicklybringtheassetvaluesintobalance.
Takethisverysimpleexample.SupposethatatthesamepointintimeyounoticedthatsharesinBHPweresellingfor$A14inSydneyandat$A20inNewYork.Couldyouarbitragethis?
Yes!“Youbeauty,amoneymachine”!
YouwouldsimultaneouslybuyinSydneyat$14andsellinNewYorkfor$20,making$6profitpersharesoldlessthecostoftransacting.Ofcourseifthisimbalanceweretooccur,itwouldnotlastforlong,becauseeveryoneelseinthemarketwouldattempttoarbitrage.Thepriceswouldveryquicklycomebackintobalance.
Arbitrageisaverypowerfulideaandhasmanyapplicationsinvaluation.Giventhataddingvalueisthenameofthegame,weneedtounderstandhowcompetitivemarketsbehave.
Diversification
Wehaveallheardthehomily“donotputallyoureggsinonebasket,(lestthebasketfallandyoubreakallyoureggsatonce)”orsomethingtothateffect.Thisisgoodadviceintheworldoffinance.Giventhatmost,ifnotallinvestorsareriskaverse,itpaystodiversify.
Diversificationprovidesthepotentialtoreduceriskwithoutdecreasingreturns.Thefollowinggraphdemonstratesthis.Wemeasurethetotalriskofaninvestmentusingthestandarddeviationofexpectedreturns.Itturnsoutthatsomeofthistotalriskisdiversifiableandcanberemoved.Thiscomponentisreferredtoasdiversifiablerisk(orasnon-systematicrisk).
Noofassets
Keepingreturnconstant
systematicrisk
unsystematicrisk
TotalRisk
Diversification
TOTALRISK=SYSRISK+UNSYSRISK
Asweaddmoreandmoreassetstoourportfoliototalriskreduces(followtheblueline).But,notethatitdoesnotfullydisappear.Thereissomeresidualriskleft.Thisisreferredtoassystematicriskornon-diversifiablerisk.Giventhatthisriskcannot
PAGE
10
ModuleOne
bediversifiedaway,riskaverseinvestorswillwanttobecompensatedforsystematicrisk.
Thefactthat(intherealworld)investmentsarenotallperfectlycorrelatedwitheachother,allowsriskreductionviadiversification.Riskaverseinvestorsseektoavoidriskandiftheycannot,theywishtobecompensatedforit.
Thehigherthesystematicriskthehigherthereturnrequiredtocompensateforthatrisk.JustconsiderAustraliangovernmentbonds.Thesearefairlysafe(almostriskfree)andprovideareturn(yield)ofabout4%pa.Wouldyoutakeonariskyinvestmentthatproducedonly4%pa?
No!Youcanmake4%withnoriskbyputtingyourmoneyingovernmentbonds.
Activity1.3
Lookupthecurrentrate(yield)forten-yeargovernmentbondsinthenewspaperandbepreparedtodiscussthesignificanceofthisnumberinclass.
Topic1.3TimeValueofMoneyandtheMathematicsofFinance
Moneyhasatimevalue,andisgenerallyexpressedintermsofitsreceiptwithearlierreceiptsbeingbetterthanlaterones.Eveniftherewerezeroinflation,mostpeoplewouldprefertohave$1000intheirpocketnow,ratherthaninoneyear’stime.
Followingthislineofreasoning,itislogicalthatifapersonistoreceiveaseriesofcashflowsondifferentdates,thevalueofthosecashflowscannotbecalculatedsimplybyaddingthem.Thevalueof$1000receivedtoday,plus$1000tobereceivedattheendoftheyearplus$1000tobereceivedattheendoftwoyears,isnot
$3000,butisalesseramount.
Acashflowline
Thisexamplecanbedepictedusingthefollowingdiagramorsomevariationofit.Itisagoodideatodrawsomesortofdiagramtodepicttheproblemathand.Thishelpsthestudenttovisualisetheproblemandassistsinthesolution.Herewehaveusedacashflowline.
0 1 2 3
1000 1000 1000
Thisseriesofcashflowswhenaddedtogethergiveatotalof$3000,buttheyarenotworth$3000now.Whataretheyworth?
Thevalueisgivenbythefollowingformula:
PresentValue10001000
1000
(1r) (1r)2
Where“r”istheinterestrateexpressedasadecimal.Thevaluewillalwaysbelessthan$3000(iethesumofthecashflows).
Ifr=10%thenthepresentvalueis$2735.54.
PresentValue100010001000
(1.1) (1.1)2
Anotherfactorrelatingtotheutilityofmoneyisrisk.Anamountof$110,000inthefuturemayseemmoreusefulthananamountof$100,000today,butwhatisthelikelihoodofreceivingthatmoney?Othereventscouldtakeplacethatcouldmeanthatapersonreceivednothinginthefuture,butcouldhaveenjoyedthe$100,000today.Withmoney,thereisprobablynosuchthingascertainty.Therearedifferentratesofreturnanddifferentlevelsofrisksfordifferenttypesofinvestment,buta
commondenominatoristhatthegreaterthereturnoninvestment,thegreatertheriskingettingthatreturn-moreaboutthislaterintheunit.
Soweneedtoadjustfortimevalueofmoney.Howdowedothis?WeuseaseriesofcalculationsthatcomeundertheheadingofFinancialMathematics.Financialmathematicsincludesthewiderangeofcalculationsthatunderliethemulti-trilliondollarfinanceindustry.
Herearesomefundamentalconceptsunderpinningfinancialmathematics:
Cashflows–Payments(outflows)orreceipts(inflows)ofmoney(cash)–outflowsareshownasnegativeusingeitheraminussignorbrackets;
Rateofreturn–Therelationshipbetweenthecashinflowsandcashoutflows;
Marketyieldorrate–therateofreturnoryieldwhichequatesthefuturecashflowswiththepriceofthefinancialinstrumentinquestion(establishedbymarketforces);
Timingconvention(cashflowsareassumedtooccuratapointintime,witht=0representingnow,andt=1representingtheendofthefirsttimeperiod,t=2endofsecondtimeperiod,andsoon;
Couponrate–Thecontractedrateofpaymentondebtandotherfinancialinstruments;
Financialcontracts–whereamountstobereceivedandtobepaidareagreed.
Theseareadequatelycoveredinthetext.
Financialanalysisanddecisionmakingrequiresacompetentunderstandingandapplicationoffinancialmathematics.Studentsshouldrefertothetexttocompiletheirownlistofformulasusedinfinancialmathematicsasappliedinthisunit.Itshouldbenotedthatdifferenttextbooks(anddifferentlecturers)useslightlydifferentwaysofexpressingtheseformulas–thereisnostandardisation,andstudentsneedtodeveloptheirownexpressionsorbecomefamiliarwiththeformulasprovidedbytheteacherforexampurposes.
Studentsshouldbecarefulwhencompilingthislist,asfontsusedbydifferentcomputers,versionsofsoftware,andprinterdrivers,torepresenttheformulasina“wordprocessed”documentmaynotalwaysbereliablyreproduced.
Asummaryoftheformulasusedinthesenotesmaybefoundattheendofeachmodule.
Inthisunit,attentionisgiventothefollowingcalculations:
Return(coveredabove)
SimpleInterest
CompoundInterest
PresentValue
FutureValue
EffectiveInterestRates
PresentandFutureValuesofAnnuities
PresentValueofPerpetuities
PresentValueofGrowingPerpetuities
Thefirstfiveitemsarecoveredinthismodule.TheothersareintroducedhereandcoveredindepthinModuleTwo.
Thefollowingsymbolswillbeusedthroughoutthematerialthatfollows:NPV=netpresentvalue
V=valueofthefirm
D=valueofdebt
E=valueofequityr=requiredreturn
C0=cashfloworvalueattime0C1=cashfloworvalueattime1CFt=cashflowattimet
D1=dividendattime1
FV=futurevalueoraccumulatedamountPV=presentvalueorprincipal
i=interestrate(youmayfind“r”and“k”alsobeinguseddependingonthecontext)n=numberoftimeperiods
t=timeperiodrangingfromt=0tot=n
jm=nominalannualratecompounded“m”timesperyearEAR=effectiveannualrate
Inthesenotesformulaswillbeprovidedwithoutproofs.Thosewithamathematicalbentmayliketocheckthederivationofalloftheformulasandsolvetheequationsfordifferentsituations.Thiswillhelpyouunderstandwhatyouaredoing.Theminimumrequirementisthatyouareabletosolvetheseproblemsusingaformulaandacalculator.Thetextbookhastablesatthebacktoassistwithcalculations.Studentsneedtobecompetentintheoperationsofthefinancialcalculatorsufficientlywelltobeabletoquicklycalculatetheanswerinanexam.
Studentsareencouragedtolearntousetheirfinancialcalculatorsasquicklyaspossible,andarepermittedtobringthemintotheexam.YoushouldalsolearnhowtodothesecalculationsusingthefinancialfunctionsinExcel.AsaguideastotestwhetheryouhaveyouhavemasteredthistopicyoushouldbeabletodoallofthequestionsatthebackofChapterThreeofthetextbookwithoutlookingatthesolutions.
SimpleInterest:SeeSection3.3ofPBEHP
Simpleinterestiswhereinterestovertheentireperiodoftheagreementorloaniscalculatedontheoriginalamountofprincipal.Thisisinfrequentlyusednowadaysincommercialsituations,butoftenformsthebasisofprivatefamilyloansandlessformalagreements.
Theformulais:
FV=PV(1+in)
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pasimpleinterest?
Solution:
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+in)
FV=1000(1+.1x2)=1000(1.2)=1200
Fromnowonyouassumethatacompoundinterestcalculationisrequiredunlessspecificallyinstructedotherwise.
CompoundInterest:SeeSection3.4ofPBEHP
Interestoninterest.Compoundinterestiswhereinterestiscalculatedeachperiodontheprincipalamountandonanyaccruedinteresttothatpointintime.Thisiscommonlyusedforloansandinvestments.Itisimportanttoknowthefrequencyofcompoundingaswellasthestatedinterestrate,asthiscanhaveahugeimpactonbothperiodicrepaymentsorreceiptsandthetotalamountpaidovertheperiodoftheagreement.Note:Whenthereisonlyonecompoundingperiodthenbothsimpleinterestandcompoundinterestapproachesproducethesameresult.
Theformulais:
FV=PV(1+i)n
Example:
Polycorpborrows$1000todayandagreestorepayinalumpsumintwoyearstime.HowmuchwouldPolycorphavetorepayifinterestis10%pacompoundedannual?
Solution:
Compoundedannually,meansthatinterestisaddedtotheaccountattheendofeachyear.
PV=$1000
n=2yearsi=10%pa
FV=tobecalculated
FV=PV(1+i)n
FV=1000(1.1)2=1000x1.21=$1210
NominalversusEffectiveRates(nottobeconfusedwithNominalvReal)
Itisalsoimportanttounderstandthedifferencebetweennominalandeffectiveinterestrateswhencalculatingeitherrepaymentsorreceipts,astheeffectiveinterestrateistheonethattakesaccountofthefrequencyofthecompounding.Thetotalamountofinterestpaidorreceivedisgreaterasthenumberofcompoundingperiodsisincreased.Inpracticeitisusualtoquotethenominalinterestrate.Forexample,myhousingloanhasaninterestrateof6%pa.Butthebankchargesinterestonamonthlybasis(thatistheyaddinteresttomyaccounteverymonth).Theeffectiveannualrateforthisloanis6.17%.Accuratetoonebasispoint.
Thecalculationoftheeffectiveinterestrateshouldbeusedbeforecomparingdifferentloansorinvestmentproductswithdifferentnominalinterestratesanddifferentcompoundingperiods.HerewewillcallthisratetheEffectiveAnnualRate(EAR).[AER=AnnualEffectiveRateisalsocommonusage]
Theformulais:
jm
EAR1m1
m
Example:
Polybankoffersabankcardfacility(Polycard)toitscustomersandadvertisesarateof18%pabutwiththeinterestaddedtotheaccounteverymonth.WhateffectiveannualrateisPolybankchargingitscustomers?
Solution:
jm=.18(18%)
m=12(monthly)
.1812
12
EAR1 1
EAR=19.56%
(SeeSection
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论