2025届广东省五校高一上数学期末教学质量检测模拟试题含解析_第1页
2025届广东省五校高一上数学期末教学质量检测模拟试题含解析_第2页
2025届广东省五校高一上数学期末教学质量检测模拟试题含解析_第3页
2025届广东省五校高一上数学期末教学质量检测模拟试题含解析_第4页
2025届广东省五校高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省五校高一上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.2.函数y=8x2-(m-1)x+m-7在区间(-∞,-]上单调递减,则m的取值范围为()A. B.C. D.3.已知,则它们的大小关系是()A. B.C. D.4.函数的零点个数为(

)A.1 B.2C.3 D.45.设当时,函数取得最大值,则()A. B.C. D.6.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流7.设则的值为A. B.C.2 D.8.设集合,,则()A. B.C. D.9.如图,AB为半圆的直径,点C为的中点,点M为线段AB上的一点(含端点A,B),若,则的取值范围是()A. B.C. D.10.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.能说明命题“如果函数与的对应关系和值域都相同,那么函数和是同一函数”为假命题的一组函数可以是________________,________________12.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______13.若函数部分图象如图所示,则此函数的解析式为______.14.函数的值域是__________.15.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.16.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数的图像经过点(),函数为奇函数.(1)求幂函数的解析式及实数a的值;(2)判断函数f(x)在区间(-1,1)上的单调性,并用的数单调性定义证明18.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)19.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?20.(1)已知若,求x的取值范围.(结果用区间表示)(2)已知,求的值21.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A2、A【解析】求出函数的对称轴,得到关于m的不等式,解出即可【详解】函数的对称轴是,若函数在区间上单调递减,则,解得:m≥0,故选A【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键3、B【解析】根据幂函数、指数函数性质判断大小关系.【详解】由,所以.故选:B4、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点5、D【解析】利用辅助角公式、两角差的正弦公式化简解析式:,并求出和,由条件和正弦函数的最值列出方程,求出的表达式,由诱导公式求出的值【详解】解:函数(其中,又时取得最大值,,,即,,,故选:6、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.7、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题8、D【解析】解一元二次不等式求出集合A,利用交集定义和运算计算即可【详解】由题意可得,则故选:D9、D【解析】根据题意可得出,然后根据向量的运算得出,从而可求出答案.【详解】因为点C为的中点,,所以,所以,因为点M为线段AB上的一点,所以,所以,所以的取值范围是,故选:D.10、B【解析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.(答案不唯一);【解析】根据所学函数,取特例即可.【详解】根据所学过过的函数,可取,,函数的对应法则相同,值域都为,但函数定义域不同,是不同的函数,故命题为假.故答案为:;12、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.13、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.14、【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:15、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.16、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)在(-1,1)上单调递增,证明见解析【解析】(1)首先代点,求函数的解析式,利用奇函数的性质,求,再验证;(2)根据函数单调性的定义,设,作差,判断符号,即可判断函数的单调性.【小问1详解】由条件可知,所以,即,,因为是奇函数,所以,即,满足是奇函数,所以成立;【小问2详解】由(1)可知,在区间上任意取值,且,,因为,所以,,所以,即,所以函数在区间上单调递增.18、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元19、(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解析】⑴设出函数解析式,根据图象,即可求得答案;⑵确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,则f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元则y=(18-x)+2,0≤x≤18令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.所以当t=4时,ymax==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约8.5万元.20、(1)(2)或.【解析】(1)根据指数函数单调性求解即可;(2)由同角三角函数的基本关系求解,注意角所在的象限即可.【详解】(1)因为,所以,解得,即x的取值范围为.(2)因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论