版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省潮州市数学高二上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或 B.C. D.或2.不等式解集为()A. B.C. D.3.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题4.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定5.已知椭圆的左、右焦点分别为,为轴上一点,为正三角形,若,的中点恰好在椭圆上,则椭圆的离心率是()A. B.C. D.6.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列7.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.48.在等差数列中,已知,则数列的前9项和为()A. B.13C.45 D.1179.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真10.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米11.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.12.中,三边长之比为,则为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不存在这样的三角形二、填空题:本题共4小题,每小题5分,共20分。13.某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________14.已知函数,则不等式的解集为____________15.已知双曲线,(,)的左右焦点分别为,过的直线与圆相切,与双曲线在第四象限交于一点,且有轴,则直线的斜率是___________,双曲线的渐近线方程为___________.16.正四棱柱中,,,点为底面四边形的中心,点在侧面四边形的边界及其内部运动,若,则线段长度的最大值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;18.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面的距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由19.(12分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.20.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求21.(12分)已知椭圆过点,且离心率.(1)求椭圆的方程;(2)设直交椭圆于两点,判断点与以线段为直径的圆的位置关系,并说明理由.22.(10分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等比数列求出m,然后求解圆锥曲线的离心率即可【详解】解:m是2与8的等比中项,可得m=±4,当m=4时,圆锥曲线为双曲线x2﹣=1,它的离心率为:,当m=-4时,圆锥曲线x2﹣=1为椭圆,离心率:,故选:A2、C【解析】化简一元二次不等式的标准形式并求出解集即可.【详解】不等式整理得,解得或,则不等式解集为.故选:.3、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.4、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.5、A【解析】根据题意得,取线段的中点,则根据题意得,,根据椭圆的定义可知,然后解出离心率的值.【详解】因为为正三角形,所以,取线段的中点,连结,则,所以,得,所以椭圆的离心率.故选:A.【点睛】求解离心率及其范围的问题时,解题的关键在于画出图形,根据题目中的几何条件列出关于,,的齐次式,然后得到关于离心率的方程或不等式求解6、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B7、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B8、C【解析】根据给定的条件利用等差数列的性质计算作答【详解】在等差数列中,因,所以.故选:C9、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.10、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C11、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C12、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】写出语文、数学、体育的所有可能排列,找出其中体育不排在第一节课的情况,利用概率公式计算即可.【详解】所有可能结果如下:(语文,数学,体育);(语文,体育,数学);(数学,语文,体育):(数学,体育,语文);(体育,语文,数学);(体育,数学,语文),其中体育不排在第一节课的情况有四种,则体育不排在第一节课的概率14、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.15、①.②.【解析】由题意,不妨设直线与圆相切于点,由可得,代入双曲线方程,可得,因此,即得解【详解】如图所示,不妨设直线与圆相切于点,,由于代入进入,可得,渐近线方程为故答案为:,16、【解析】根据正四棱柱的性质、矩形的性质,线面垂直的判定定理,结合勾股定理进行求解即可.【详解】当位于点时,因为是正方形,所以,由正四棱柱的性质可知,平面,因为平面,所以,因为平面,所以平面,平面,所以,因此当位于点时,满足题意,当点位于边点时,若,在矩形中,,因为,所以,因此,所以有,此时,又平面,所以平面,故点的轨迹在线段上,,所以线段长度的最大值为.故答案为:关键点睛:利用特殊点判断出点的轨迹是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为二面角的平面角,理由见解析(2)证明见解析(3)证明见解析【解析】(1)根据,结合二面角定义得到答案.(2)证明平面得到,得到平面,得到证明.(3)延长,交于点,连接,证明即可.【小问1详解】连接,则,,故为二面角的平面角.【小问2详解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小问3详解】延长,交于点,连接,易知,故故是的中点,是线段的中点,故,平面,且平面,故直线平面.18、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以19、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是函数的零点,由,得.令,则.或时,,时,,所以在和上都是减函数,在上是增函数,时取极小值,又当时,.所以时,关于的方程无解,或时关于的方程只有一个解,时,关于的方程有两个不同解.因此,时函数没有零点,或时函数有且只有一个零点,时,函数有两个零点.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查利用导数判断函数的零点,解题的关键是由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,考查数形结合的思想,属于中档题20、(1)(2)【解析】(1)直接利用等差数列的通项公式即可求解;(2)先判断出数列单调性,由时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】是等差数列,公差;即;【小问2详解】,则由(1)可知前五项为正,第六项开始为负.21、(1)(2)点G在以AB为直径的圆外【解析】解法一:(Ⅰ)由已知得解得所以椭圆E的方程为(Ⅱ)设点AB中点为由所以从而.所以.,故所以,故G在以AB为直径的圆外解法二:(Ⅰ)同解法一.(Ⅱ)设点,则由所以从而所以不共线,所以锐角.故点G在以AB为直径的圆外考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大理石浮雕施工合同
- 2024年度劳动合同-高级管理人员雇佣合同
- 2024年度产业园停车服务合同
- 2024年度猪肉原材料采购与供货合同
- 2024年度建筑工程施工合同施工标的及施工期限
- 2024年度烧烤店经营权租赁合同
- 2024年度南京办公室装修质量保证合同
- 2024年度企业级物联网应用与服务合同
- 2024年度zx公司钢结构防火涂料施工培训合同
- 2024年度农产品运输车辆承包合同
- 220kVGIS组合电器安装施工方案
- 爱护公物_从我做起ppt
- 淡谈柴油机冒黑烟故障的诊断与排除1
- 河南省南阳市高中毕业生登记表普通高中学生学籍册
- 低血糖的预防及处理(课堂PPT)
- 环境工程专业英语翻译理论PPT选编课件
- 新实用汉语课本16课
- 金融企业详细划分标准出台-共分大中小微四类型
- 南芳学校学生“双姿”日常考核方案
- 网络安全检查表完整参考模板
- 铝基合金高温相变储热材料
评论
0/150
提交评论