版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省部分重点中学数学高一上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-22.已知集合,则()A.0或1 B.C. D.或3.要得到函数的图像,需要将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.某几何体的三视图如图所示,数量单位为cm,它的体积是()A. B.C. D.5.下列叙述正确的是()A.三角形的内角是第一象限角或第二象限角 B.钝角是第二象限角C.第二象限角比第一象限角大 D.不相等的角终边一定不同6.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内7.已知点,,,则的面积为()A.5 B.6C.7 D.88.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.199.已知函数,若方程有8个相异实根,则实数的取值范围A. B.C. D.10.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)二、填空题:本大题共6小题,每小题5分,共30分。11.已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点__________12.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.13.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.14.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______15.已知平面,,直线,若,,则直线与平面的位置关系为______.16.经过原点并且与直线相切于点的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(且)是定义域为R的奇函数(Ⅰ)求t的值;(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由18.已知函数在区间上的最大值为6.(1)求常数m的值;(2)当时,将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数,求函数的单调递减区间、对称中心.19.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由21.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.2、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.3、A【解析】直接按照三角函数图像的平移即可求解.【详解】,所以是左移个单位.故选:A4、C【解析】由三视图可知,此几何体为直角梯形的四棱锥,根据四棱锥的体积公式即可求出结果.【详解】由三视图复原几何体为四棱锥,如图:它高为,底面是直角梯形,长底边为,上底为,高为,棱锥的高垂直底面梯形的高的中点,所以几何体的体积为:故选:C【点睛】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状以及几何尺寸,同时需熟记锥体的体积公式,属于基础题.5、B【解析】利用象限角、钝角、终边相同角的概念逐一判断即可.【详解】∵直角不属于任何一个象限,故A不正确;钝角属于是第二象限角,故B正确;由于120°是第二象限角,390°是第一象限角,故C不正确;由于20°与360°+20°不相等,但终边相同,故D不正确.故选B【点睛】本题考查象限角、象限界角、终边相同的角的概念,综合应用举反例、排除等手段,选出正确的答案6、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明7、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A8、A【解析】由题可知∴故选A9、D【解析】画出函数的图象如下图所示.由题意知,当时,;当时,设,则原方程化为,∵方程有8个相异实根,∴关于的方程在上有两个不等实根令,则,解得∴实数的取值范围为.选D点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识10、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为与的回归直线方程必过定点则与的回归直线方程必过定点.即答案为.12、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:13、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:14、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.15、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.16、【解析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)t=2,(Ⅱ)不存在【解析】(Ⅰ)由题意f(0)=0,可求出t的值;(Ⅱ)假设存在正数符合题意,由函数的图象过点可得,得到的解析式,设,得到关于的解析式,然后对值进行讨论,看是否有满足条件的的值.【详解】解:(Ⅰ)因为f(x)是定义域为R的奇函数,∴f(0)=0,∴t=2,经检验符合题意,所以;(Ⅱ)假设存在正数符合题意,因为函数的图象过点,所以,解得,则,设,则,因为,所以,记,,函数在上的最大值为0,∴(ⅰ)若,则函数在有最小值为1,对称轴,∴,所以,故不合题意;(ⅱ)若,则函数在上恒成立,且最大值为1,最小值大于0,①,又此时,又,故无意义,所以应舍去;②,无解,综上所述:故不存在正数,使函数在上的最大值为018、(1)3(2)单调递减区间为;对称中心.【解析】(1)先对化简,根据最大值求m;(2)利用整体代入法求单调递减区间和对称中心.【小问1详解】,由,所以在区间上的最大值为2+m+1=6,解得m=3.【小问2详解】由(1)知,.将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到.要求函数的单调递减区间,只需,解得.所以的单调递减区间为要求函数的对称中心,只需,解得.所以的对称中心为.19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)或,(2)存在实数,使在区间上的最大值为2【解析】(1)由条件幂函数,在上为增函数,得到解得2分又因为所以或3分又因为是偶函数当时,不满足为奇函数;当时,满足为偶函数;所以5分(2)令,由得:在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色生态农业项目采购及施工安装合同汇编3篇
- 2025年度餐厨废弃物处置与废弃物资源化利用合作协议3篇
- 2025年度电力设施建设与运营合同2篇
- 2024年绿化工程专用树木购买及养护服务合同范本3篇
- 2024年餐饮业废料环保处理协议版
- 2024年高性能节能砌体劳务分包合同3篇
- 2024年违章建筑拆除补偿协议3篇
- 2024年高速铁路桥梁钢筋订购合同
- 2024年校园招聘及实习生培养服务合同3篇
- 2024智能安防系统集成服务合同
- 医护人员礼仪培训
- 无人机飞行安全协议书
- 山西省晋中市2023-2024学年高一上学期期末考试 生物 含解析
- DB34T4912-2024二手新能源汽车鉴定评估规范
- 《商务沟通(第二版)》 课件全套 第1-4章 商务沟通概论 -商务沟通实务
- 江苏省丹阳市丹阳高级中学2025届物理高一第一学期期末统考试题含解析
- 中华护理学会团体标准-气管切开非机械通气患者气道护理
- 2023年海南公务员考试申论试题(A卷)
- DB3502Z 5034-2018 厦门市保障性住房建设技术导则
- 2024年银行贷款还款计划书范本
- 知不足而奋进望远山而力行-期中考前动员班会 课件
评论
0/150
提交评论