吉林省名校2025届高二上数学期末学业水平测试试题含解析_第1页
吉林省名校2025届高二上数学期末学业水平测试试题含解析_第2页
吉林省名校2025届高二上数学期末学业水平测试试题含解析_第3页
吉林省名校2025届高二上数学期末学业水平测试试题含解析_第4页
吉林省名校2025届高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省名校2025届高二上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为等差数列,为其前n项和,,则下列和与公差无关的是()A. B.C. D.2.函数的导数为()A.B.CD.3.设,随机变量X的分布列如下表所示,随机变量Y满足,则当a在上增大时,关于的表述下列正确的是()X013PabA增大 B.减小C.先增大后减小 D.先减小后增大4.如图是函数的导数的图象,则下面判断正确的是()A.在内是增函数B.在内是增函数C.在时取得极大值D.在时取得极小值5.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°6.已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A. B.C. D.7.已知等差数列的前n项和为,且,,则为()A. B.C. D.8.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.9.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数10.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.11.已知关于的不等式的解集是,则的值是()A. B.5C. D.712.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.26二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,已知向量,则在轴上的投影向量为________.14.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.15.已知动圆P过定点,且在定圆的内部与其相内切,则动圆P的圆心的轨迹方程为______16.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:加盟店个数(个)12345单店日平均营业额(万元)10.910.297.871(参考数据及公式:,,线性回归方程,其中,.)(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.18.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由20.(12分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.21.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值22.(10分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线方程;(2)若、是曲线上两点,点满足求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依题意根据等差数列的通项公式可得,再根据等差数列前项和公式计算可得;【详解】解:因为,所以,即,所以,,,,故选:C2、B【解析】由导数运算法则可求出.【详解】,.故选:B.3、A【解析】先求得参数b,再去依次去求、、,即可判断出的单调性.【详解】由得则,由得a在上增大时,增大.故选:A4、B【解析】根据图象判断的单调性,由此求得的极值点,进而确定正确选项.【详解】由图可知,在区间上,单调递减;在区间上,单调递增.所以不是的极值点,是的极大值点.所以ACD选项错误,B选项正确.故选:B5、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.6、C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:7、C【解析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【详解】由题意知:,解得,则.故选:C.8、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B9、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.10、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题11、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D12、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据向量坐标意义及投影的定义得解.【详解】因为向量,所以在轴上的投影向量为.故答案为:14、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.15、【解析】设切点为,根据题意,列出点满足的关系式即.则点的轨迹是椭圆,然后根据椭圆的标准方程求点的轨迹方程【详解】设动圆和定圆内切于点,动点到定点和定圆圆心距离之和恰好等于定圆半径,即,点的轨迹是以,为两焦点,长轴长为10的椭圆,,点的轨迹方程为,故答案:16、【解析】首先利用展开式的二项式系数和是求出,然后即可求出二项式的常数项.【详解】由题知展开式的二项式系数之和是,故有,可得,知当时有.故展开式中的常数项为.故答案为:.【点睛】本题考查了利用二项式的系数和求参数,求二项式的常数项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)5,6,7;(3).【解析】(1)先求得,,进而得到b,a求解;(2)根据题意,由求解;(3)利用古典概型的概率求解.【详解】(1)由题可得,,,设所求线性回归方程为,则,将,代入,得,故所求线性回归方程为.(2)根据题意,,解得:,又,所以的所有可能取值为5,6,7.(3)设其他5个地区分别为,他们选择结果共有25种,具体如下:,,,,,,,,,,,,,,,,,,,,,,,,,其中他们在同一个地区的有5种,所以他们选取地区相同的概率.18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.19、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程为,由消去y并整理,得,设,则由,得,即,将代入上式并化简,得将式代入上式,有,解得,而,求得点M在椭圆外,若与椭圆无交点不满足条件,所以不存在这样的点M【点睛】本题关键是由得,将几何关系转化为代数关系进行计算.20、(1),(2)【解析】(1)根据已知递推关系式再写一式,然后两式相减,由等差数列、等比数列的定义即可求解;(2)根据已知递推关系式再写一式,然后两式相减,求出,最后利用错位相减法即可得答案.【小问1详解】解:因为,,所以,,得,所以是以2为首项2为公差的等差数列,是以1为首项2为公差的等差数列,所以,,所以;因为,所以,又由得,所以是以2为首项2为公比的等比数列,所以.【小问2详解】解:当时,,当时,,得,即,记,则,,则.21、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论