2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题含解析_第1页
2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题含解析_第2页
2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题含解析_第3页
2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题含解析_第4页
2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届合肥市第六中学高一数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值为()A. B.C.2 D.32.设,且,则()A. B.10C.20 D.1003.集合,集合或,则集合()A. B.C. D.4.平行线与之间的距离等于()A. B.C. D.5.设集合,,则集合与集合的关系是()A. B.C. D.6.函数f(x)=若f(x)=2,则x的值是()A. B.±C.0或1 D.7.函数,则f(log23)=()A.3 B.6C.12 D.248.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知向量,若,则()A.1或4 B.1或C.或4 D.或10.某几何体的三视图如图所示,则它的体积是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,的值域为,则实数的取值范围为__________.12.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.13.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,14.经过点且在轴和轴上的截距相等的直线的方程为__________15.已知函数的零点为,不等式的最小整数解为,则__________16.一个棱长为2cm的正方体的顶点都在球面上,则球的体积为_______cm³.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知且是上的奇函数,且(1)求的解析式;(2)若不等式对恒成立,求取值范围;(3)把区间等分成份,记等分点的横坐标依次为,,设,记,是否存在正整数,使不等式有解?若存在,求出所有的值,若不存在,说明理由.18.在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.试证明:函数在区间上为“弱增”函数.19.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.20.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?21.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先利用,得;再用换元法结合二次函数求函数最值.【详解】,,当时取最大值,.故选:B【点睛】易错点点睛:注意的限制条件.2、A【解析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.3、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.4、C【解析】,故选5、D【解析】化简集合、,进而可判断这两个集合的包含关系.【详解】因为,,因此,.故选:D.6、A【解析】根据函数值为2,分类讨论即可.【详解】若f(x)=2,①x≤-1时,x+2=2,解得x=0(不符合,舍去);②-1<x<2时,,解得x=(符合)或x=(不符,舍去);③x≥2时,2x=2,解得x=1(不符,舍去).综上,x=.故选:A.7、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.8、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.9、B【解析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.【详解】由题意,向量,可得,因为,则,解得或.故选:B.10、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:12、【解析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.13、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;14、或【解析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用15、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.16、【解析】因为一个正方体的顶点都在球面上,它的棱长为2,所以正方体的外接球的直径就是正方体的对角线的长度:2所以球的半径为:所求球的体积为=故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)存在,正整数或2.【解析】(1)根据,,即可求出的值,从而可求函数的解析式;(2)根据函数的奇偶性和单调性由题意可得到恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;(3)设等分点的横坐标为,.首先根据,可得到函数的图象关于点对称,从而可得到,;进而可求出;再根据,从而只需求即可.【小问1详解】∵是上的奇函数,∴,由,可得,,∵,∴,,所以.又,所以为奇函数.所以.【小问2详解】因为,所以在上单调递增,又为上的奇函数,所以由,得,所以,即恒成立,当时,不等式为不能恒成立,故不满足题意;当时,要满足题意,需,解得,所以实数的取值范围为.【小问3详解】把区间等分成份,则等分点的横坐标为,,又,为奇函数,所以的图象关于点对称,所以,,所以,因为,所以,即.故存在正整数或2,使不等式有解.18、见解析【解析】根据定义,只要证明函数在是单调减函数即可,这可以通过单调减函数的定义去证明.证明:设任意,且,由于,所以在区间上,为增函数.令,则有:.由于,则且,故.故在区间上,函数为减函数.由“弱增”函数的定义可知,函数在区间上为“弱增”函数.19、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,∴,∴,经验证,为奇函数,∴.(Ⅱ)减函数证明:任取,,且,则,∵∴∴,;∴,即∴该函数在定义域上减函数.(Ⅲ)由得,∵是奇函数,∴,由(Ⅱ)知,是减函数∴原问题转化为,即对任意恒成立,∴,得即为所求.(Ⅳ)原函数零点的问题等价于方程由(Ⅱ)知,,即方程有解∵,∴当时函数存在零点.点睛:利用函数性质解不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.20、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.21、(1)见解析(2)见解析【解析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论