山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题含解析_第1页
山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题含解析_第2页
山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题含解析_第3页
山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题含解析_第4页
山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊寿光市2025届高一数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()A. B.C. D.2.下列函数中在定义域上为减函数的是()A. B.C. D.3.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.4.下列运算中,正确的是()A. B.C. D.5.角度化成弧度为()A. B.C. D.6.函数与的图象在上的交点有()A.个 B.个C.个 D.个7.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数8.已知函数,则,则A. B.C.2 D.9.已知命题,则是()A., B.,C., D.,10.在中,下列关系恒成立的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.12.已知函数,则下列命题正确的是______填上你认为正确的所有命题的序号①函数单调递增区间是;②函数的图象关于点对称;③函数的图象向左平移个单位长度后,所得的图象关于y轴对称,则m的最小值是;④若实数m使得方程在上恰好有三个实数解,,,则13.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________14.已知幂函数在区间上单调递减,则___________.15.记函数的值域为,在区间上随机取一个数,则的概率等于__________16.若,则a的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数(1)求实数的值;(2)判断函数的单调性,并利用定义证明18.已知集合,,(1)求集合A,B及.(2)若,求实数a的取值范围.19.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值20.求函数在区间上的最大值和最小值.21.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选A.考点:动点问题的函数图象;二次函数的图象.2、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C3、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程4、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.5、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.6、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.7、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.8、B【解析】因为,所以,故选B.9、C【解析】由全称命题的否定是特称命题即可得结果.【详解】由全称命题的否定是特称命题知:,,是,,故选:C.10、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.12、①③④【解析】先利用辅助角公式化简,再根据函数,结合三角函数的性质及图形,对各选项依次判断即可【详解】①,令,所以,因为,所以令,则,所以单调增区间是,故正确;②因为,所以不是对称中心,故错误;③的图象向左平移个单位长度后得到,且是偶函数,所以,所以且,所以时,,故正确;④函数,故错误;⑤因为,作出在上的图象如图所示:与有且仅有三个交点:所以,又因为时,且关于对称,所以,所以,故正确;故选:①③⑤13、【解析】由题意得14、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:15、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率16、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)为减函数;证明见解析【解析】(1)根据奇函数的定义,即可求出;(2)利用定义证明单调性【详解】解:(1),由得,解得另解:由,令得代入得:验证,当时,,满足题意(2)为减函数证明:由(1)知,在上任取两不相等的实数,,且,,由为上的增函数,,,,,则,函数为减函数【点睛】定义法证明函数单调性的步骤:(1)取值;(2)作差;(3)定号;(4)下结论18、(1),,;(2).【解析】(1)解不等式得到集合,,进而可得;(2)先求,再根据得到,由此可解得实数的取值范围【详解】(1)∵,∴且,解得,故集合.∵,∴,解得,故集合.∴.(2)由()可得集合,集合,则.又集合,由得,解得,故实数的取值范围是19、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.20、最大值53,最小值4【解析】先化简,然后利用换元法令t=2x根据变量x的范围求出t的范围,将原函数转化成关于t的二次函数,最后根据二次函数的性质求在闭区间上的最值即可【详解】∵,令,,则,对称轴,则在上单调递减;在上单调递增.则,即时,;,即时,.【点睛】本题主要考查了函数的最值及其几何意义,以及利用换元法转化成二次函数求解值域的问题,属于基础题21、(1)(2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论