版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省运城市临猗中学高一上数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数f(x)=x-lnx,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.区间内无零点,在区间(1,e)内有零点2.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.53.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A.135平方米 B.270平方米C.540平方米 D.1080平方米4.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20245.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个6.“”是“的最小正周期为”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.8.如图,在中,是的中点,若,则实数的值是A. B.1C. D.9.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a10.尽管目前人类还无法准确预报地震,但科学研究表明,地震时释放出的能量E(单位:焦耳)与地震里氏M震级之间的关系为lgE=4.8+1.5M.已知两次地震的能量与里氏震级分别为Ei与Mii=1,2,若A.103C.lg3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______12.已知幂函数在为增函数,则实数的值为___________.13.已知函数,则的单调递增区间是______14.计算:______.15.如果对任意实数x总成立,那么a的取值范围是____________.16.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围18.已知函数(1)求的对称轴方程;(2)若在上,函数最小值为且有两个不相等的实数根,求实数m的取值范围19.已知函数.(1)求函数最大值及相应的的值;(2)求函数的单调增区间.20.对于函数,存在实数,使成立,则称为关于参数的不动点.(1)当时,凾数在上存在两个关于参数的相异的不动点,试求参数的取值范围;(2)对于任意的,总存在,使得函数有关于参数的两个相异的不动点,试求的取值范围.21.已知(1)化简;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】求出导函数,由导函数的正负确定函数的单调性,再由零点存在定理得零点所在区间【详解】当x∈时,函数图象连续不断,且f′(x)=-=<0,所以函数f(x)在上单调递减又=+1>0,f(1)=>0,f(e)=e-1<0,所以函数f(x)有唯一的零点在区间(1,e)内故选:D2、B【解析】当时,即可得到答案.【详解】由题意可得当时故选:B3、B【解析】直接利用扇形面积计算得到答案.【详解】根据扇形的面积公式,计算扇形田的面积为Slr45270(平方米).故选:B.【点睛】本题考查了扇形面积,属于简单题.4、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:5、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.6、A【解析】根据函数的最小正周期求得,再根据充分条件和必要条件的定义即可的解.【详解】解:由的最小正周期为,可得,所以,所以“”是“的最小正周期为”的充分不必要条件.故选:A.7、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B8、C【解析】以作为基底表示出,利用平面向量基本定理,即可求出【详解】∵分别是的中点,∴.又,∴.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力9、A【解析】找中间量0或1进行比较大小,可得结果【详解】,所以,故选:A.【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题10、A【解析】利用对数运算和指数与对数互化求解.【详解】由题意得:lgE1=4.8+1.5两式相减得:lgE又因为M2所以E2故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:12、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:413、【解析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.14、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.15、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:16、①.②.【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【详解】因为,所以,由,故知,共有31位.故答案为:;31三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用对数函数单调性求出,即,利用指数函数单调性解不等式,求出,从而求出并集;(2)根据集合的包含关系得到不等式,求出实数的取值范围.【小问1详解】因为,所以,,由,得,所以,当时,∴【小问2详解】由可得:,解得:所以实数的取值范围是18、(1),;(2).【解析】(1)应用二倍角正余弦公式、辅助角公式可得,根据余弦函数的性质求的对称轴方程.(2)由题设可得,画出的图象,进而由已知条件及数形结合思想求m的取值范围【小问1详解】由题设,,令,,可得,.∴的对称轴方程为,.【小问2详解】令,在上,而时有,且图象如下:又最小值为且有两个不相等的实数根,由上图知:,可得.19、(1)时,;(2).【解析】(1)利用倍角公式对函数进行化简得:,进而得到函数的最大值及对应的的值;(2)将代入的单调递增区间,即可得答案;【详解】解:(1),当,即时,;(2)由题意得:,函数的单调增区间为.【点睛】本题考查三角恒等变换、正弦函数的最值和单调区间,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20、(1)(2)【解析】(1)题目转化为,根据双勾函数的单调性得到函数值域,得到范围.(2)根据得到,设,构造函数,根据函数的单调性得到函数的最大值,讨论端点值的大小关系解不等式得到答案.【小问1详解】,,即,,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度大棚蔬菜种植与农业休闲农业项目合作协议2篇
- 二零二五年度南京市房地产经纪行业劳务派遣及销售服务合同
- 2025年度猪场生物安全防护与防疫物资供应合同4篇
- 二手房地产交易安全保障与监管合同
- 2025年水果采摘与农家乐特色农产品销售合同3篇
- 二零二五年度企业股权激励计划转让合同
- 2025年大数据处理与分析软件服务采购协议3篇
- 二零二五年建筑资质挂靠与工程进度调整服务协议3篇
- 2025年度二手房买卖合同附加物业管理费结算协议3篇
- 二零二五年度大型商业综合体工程分包管理协议2篇
- 四川省高职单招电气技术类《电子基础》历年考试真题试题库(含答案)
- 中级半导体分立器件和集成电路装调工技能鉴定考试题库(含答案)
- 2024年江西生物科技职业学院单招职业技能测试题库带解析答案
- 桥本甲状腺炎-90天治疗方案
- (2024年)安全注射培训课件
- 2024版《建设工程开工、停工、复工安全管理台账表格(流程图、申请表、报审表、考核表、通知单等)》模版
- 部编版《道德与法治》六年级下册教材分析万永霞
- 酒店人防管理制度
- 油田酸化工艺技术
- 上海高考英语词汇手册列表
- 移动商务内容运营(吴洪贵)任务五 其他内容类型的生产
评论
0/150
提交评论