2025届黑龙江绥化一中数学高二上期末监测模拟试题含解析_第1页
2025届黑龙江绥化一中数学高二上期末监测模拟试题含解析_第2页
2025届黑龙江绥化一中数学高二上期末监测模拟试题含解析_第3页
2025届黑龙江绥化一中数学高二上期末监测模拟试题含解析_第4页
2025届黑龙江绥化一中数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江绥化一中数学高二上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁2.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.3.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.4.计算复数:()A. B.C. D.5.圆的圆心坐标和半径分别为()A.和 B.和C.和 D.和6.某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台 B.7千台C.8千台 D.9千台7.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.8.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.9.已知是等差数列,,,则公差为()A.6 B.C. D.210.已知F是抛物线x2=y的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到x轴的距离为()A. B.C.1 D.11.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品12.如图,函数的图象在P点处的切线方程是,若点的横坐标是5,则()A. B.1C.2 D.0二、填空题:本题共4小题,每小题5分,共20分。13.二进制数转化成十进制数为______.14.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.15.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.16.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积18.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.19.(12分)已知椭圆经过点,且离心率为(1)求椭圆C的标准方程;(2)已知点A,B是椭圆C的上,下顶点,点P是直线上的动点,直线PA与椭圆C的另一交点为E,直线PB与椭圆C的另一交点为F.证明:直线EF过定点20.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,(1)求,;(2)已知,,试比较,的大小21.(12分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围22.(10分)已知数列的首项,前n项和为,且满足.(1)求证:数列是等比数列;(2)设,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D2、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.3、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C4、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.5、C【解析】利用圆的一般方程的圆心和半径公式,即得解【详解】可化为,由圆心为,半径,易知圆心的坐标为,半径为.故选:C6、A【解析】构造利润函数,求导,判断单调性,求得最大值处对应的自变量即可.【详解】设利润为y万元,则,∴.令,解得(舍去)或,经检验知既是函数的极大值点又是函数的最大值点,∴应生产6千台该产品.故选:A【点睛】利用导数求函数在某区间上最值的规律:(1)若函数在区间上单调递增或递减,与一个为最大值,一个为最小值(2)若函数在闭区间上有极值,要先求出上的极值,与,比较,最大的是最大值,最小的是最小值,可列表完成(3)函数在区间上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到7、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选8、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.9、C【解析】设的首项为,把已知的两式相减即得解.【详解】解:设的首项为,根据题意得,两式相减得.故选:C10、B【解析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出,的中点纵坐标,求出线段的中点到轴的距离【详解】解:抛物线的焦点准线方程,设,,,解得,线段的中点纵坐标为,线段的中点到轴的距离为,故选:B【点睛】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离,属于基础题11、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C12、C【解析】函数的图象在点P处的切线方程是,所以,在P处的导数值为切线的斜率,2,故选C考点:本题主要考查导数的几何意义点评:简单题,切线的斜率等于函数在切点的导函数值二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】根据二进制数和十进制数之间的转换方法即可求解.【详解】.故答案为:13.14、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:115、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.16、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】根据旋转体的轴截面图,根据已知条件求球的半径与长,再利用球体、圆锥的面积、体积公式计算即可.【小问1详解】连接,则,设,在中,,;【小问2详解】,∴圆锥球.18、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.19、(1);(2)证明见解析.【解析】(1)根据题意,列出的方程组,通过解方程组,即可求出答案.(2)法一:设,,;当时,根据点的坐标写出直线PA的方程,与椭圆方程联立,可求出点的坐标;同理可求出点的坐标,然后即可求出直线EF的方程,从而证明直线EF过定点.法二:首先根据时直线EF的方程为,可判断出直线EF过的定点M必在y轴上,设为;然后同方法一,求出点,的坐标,根据,即可求出的值.【小问1详解】由题意,知,解得,所以椭圆C的标准方程为【小问2详解】法一:设,,,当时,直线PA的方程为,由,得解得,所以.所以同理可得所以直线EF的斜率为,所以直线EF的方程为,整理得,所以直线EF过定点当时,点E,F在y轴上,EF的方程为,显然过点综上,直线EF过定点法二:当点P在y轴上时,E,F分别与B,A重合,直线EF的方程为,若直线EF过定点M,则M必在y轴上,可设当点P不在y轴上时,设,,,则直线PA的方程为,由,得,解得,所以,所以,同理可得,所以,因为E,F,M三点共线,所以,所以,整理得,因为,所以,解得,即所以直线EF过定点20、(1),;(2).【解析】(1)设等差数列的公差,等比数列的公比,由已知列式计算得解.(2)由(1)的结论,用等比数列前n项和公式求出,用裂项相消法求出,再比较大小作答.【小问1详解】设等差数列的公差为,等比数列的公比为,依题意,,整理得:,解得,所以,.【小问2详解】由(1)知,,数列是首项为,公比为的等比数列,则,,,则,用数学归纳法证明,,①当时,左边,右边,左边>右边,即原不等式成立,②假设当时,不等式成立,即,则,即时,原不等式成立,综合①②知,,成立,因此,,即,所以.21、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小问2详解】由(1)知,在区间上的最小值为因为存在零点,所以,从而当时,在区间上单调递减,且,所以是在区间上的唯一零点当时,在区间上单调递减,且,所以在区间上仅有一个零点综上可知,若存在零点,则在区间上仅有一个零点【小问3详解】设,①若,则,符合题意②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论