版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市2025届高一数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义城为()A B.C. D.2.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC3.设a=,b=,c=,则a,b,c的大小关系是()A. B.C. D.4.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.5.定义在上的函数满足,且当时,.若关于的方程在上至少有两个实数解,则实数的取值范围为A. B.C. D.6.若向量,,满足,则A.1 B.2C.3 D.47.已知,则os等于()A. B.C. D.8.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值9.已知点(a,2)在幂函数的图象上,则函数f(x)的解析式是()A. B.C. D.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1C.-1 D.-3二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则用表示______________;12.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.13.cos(-225°)=______14.若sinα<0且tanα>0,则α是第___________象限角15.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________16.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.18.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围19.已知两个非零向量和不共线,,,(1)若,求的值;(2)若A、B、C三点共线,求的值20.对于函数,存在实数,使成立,则称为关于参数的不动点.(1)当时,凾数在上存在两个关于参数的相异的不动点,试求参数的取值范围;(2)对于任意的,总存在,使得函数有关于参数的两个相异的不动点,试求的取值范围.21.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C2、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理3、C【解析】根据指数和幂函数的单调性比较大小即可.【详解】因为在上单调递增,在上单调递减所以,故.故选:C4、A【解析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.5、C【解析】原问题等价于函数与的图象至少有两个交点【详解】解:关于的方程在上至少有两个实数解,等价于函数与的图象至少有两个交点,因为函数满足,且当时,,所以当时,,时,,时,,所以的大致图象如图所示:因为表示恒过定点,斜率为的直线,所以要使两个函数图象至少有两个交点,由图可知只需,即,故选:C6、A【解析】根据向量的坐标运算,求得,再根据向量的数量积的坐标运算,即可求解,得到答案.【详解】由题意,向量,,,则向量,所以,解得,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.7、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.8、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.9、A【解析】由幂函数的定义解出a,再把点代入解出b.【详解】∵函数是幂函数,∴,即,∴点(4,2)在幂函数的图象上,∴,故故选:A.10、D【解析】∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对数的运算性质,对已知条件和目标问题进行化简,即可求解.【详解】因为,故可得,解得..故答案:.【点睛】本题考查对数的运算性质,属基础题.12、【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.13、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”14、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.15、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用16、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),鱼的年生长量可以达到最大值12.5【解析】(1)根据题意得建立分段函数模型求解即可;(2)根据题意,结合(1)建立一元二次函数模型求解即可.【小问1详解】解:(1)依题意,当时,当时,是的一次函数,假设且,,代入得:,解得.所以【小问2详解】解:当时,,当时,所以当时,取得最大值因为所以时,鱼的年生长量可以达到最大值12.5.18、(1)(2)奇函数,证明见解析(3)【解析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称,又,所以为奇函数;【小问3详解】因为,又外部函数为增函数,内部函数在上为增函数,由复合函数的单调性知函数在上为增函数,所以,又对于恒成立,所以,所以,所以实数的范围是19、(1)-1(2)-1【解析】(1)根据即可得出,,由即可得出1+k=0,从而求出k的值;(2)根据A,B,C三点共线即可得出,从而可得出,根据平面向量基本定理即可得出,解出k即可【详解】解:(1);∴=;∵;∴k+1=0;∴k=-1;(2)∵A,B,C三点共线;∴;∴;∴;∵不共线;∴由平面向量基本定理得,;解得k=-1【点睛】本题考查向量减法的几何意义,以及向量的数乘运算,平面向量基本定理20、(1)(2)【解析】(1)题目转化为,根据双勾函数的单调性得到函数值域,得到范围.(2)根据得到,设,构造函数,根据函数的单调性得到函数的最大值,讨论端点值的大小关系解不等式得到答案.【小问1详解】,,即,,即,函数在上单调递减,在上单调递增,,,当时,,有两个解,故.【小问2详解】,即,,整理得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际物流练习试题附答案
- 药剂练习试卷附答案
- 保命教育考试复习试题含答案
- 长距离供热管道项目风险分析与应对措施
- 供热计量改造项目资金需求与投资估算
- 2024年版夫妻双方平等离婚合同版B版
- 省级产业园区基础设施现状分析
- 2024年网络游戏授权合同范本:游戏版权授权3篇
- 2024年版劳动法:劳动协议与聘用协议区别明细版
- 测温系统课程设计
- 结构化学(PDF电子书)
- 北京市海淀区2023-2024学年高二上学期期末练习数学试卷 含解析
- 高中英语新外研版必修1单词英译汉
- (完整版)新员工进场三级安全教育考核-试卷及答案
- 鹿角形肾结石诊断治疗指南
- 天津市河西区2023-2024学年高二上学期1月期末化学试题(解析版)
- 1.3 中华文明的起源 课件 2024-2025学年部编版七年级历史上学期
- DB15-T 3600-2024 黑土地质量等级划分技术规范
- 《民用爆炸物品企业安全生产标准化实施细则》解读
- MIL-STD-1916抽样计划表(抽样数)大
- 当代民航精神与文化智慧树知到期末考试答案章节答案2024年中国民用航空飞行学院
评论
0/150
提交评论