版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省林州市林滤中学数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点到直线的距离为1,则m的值为()A.或 B.或15C.5或 D.5或152.已知向量,,且与互相垂直,则()A. B.C. D.3.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.4.设函数的导函数是,若,则()A. B.C. D.5.如果向量,,共面,则实数的值是()A. B.C. D.6.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.7.在正项等比数列中,,,则()A27 B.64C.81 D.2568.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.9.已知函数,若对任意的,,且,总有,则的取值范围是()A B.C. D.10.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.11.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.9212.在中,内角的对边分别为,若,则角为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是椭圆上的一点,点,则的最小值为____________.14.曲线在点处的切线方程为__________.15.已知等差数列满足,,,则公差______16.若正数x、y满足,则的最小值等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.18.(12分)已知圆C的圆心在x轴上,且经过点,.(1)求圆C的标准方程;(2)过斜率为的直线与圆C相交于M,N,两点,求弦MN的长.19.(12分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数的取值范围22.(10分)已知椭圆的上下两个焦点分别为,,过点与y轴垂直的直线交椭圆C于M,N两点,△的面积为,椭圆C的离心率为(1)求椭圆C的标准方程;(2)已知O为坐标原点,直线与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数,使得,求m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用点到直线距离公式即可得出.【详解】解:点到直线的距离为1,解得:m=15或5故选:D.2、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.3、C【解析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.4、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.5、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.6、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决7、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.8、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).9、B【解析】根据函数单调性定义、二次函数性质及对称轴方程,即可求解参数取值范围.【详解】依题意可得,在上为减函数,则,即的取值范围是故选:B【点睛】本题考查函数单调性定义,二次函数性质,属于基础题.10、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解11、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.12、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,表示出,消去y,利用二次函数求最值即可.【详解】设,则.所以当x=1时,最小.故答案为:.14、【解析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】函数的导数为,所以切线的斜率,切点为,则切线方程为故答案为:【点睛】易错点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点,考查学生的运算能力,属于基础题.15、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:216、9【解析】把要求的式子变形为,利用基本不等式即可得结果.【详解】因为,所以,当且仅当时取等号,故答案为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将几何体的表面积分成上下两个扇形、两个矩形和一个圆柱形侧面的一部分组成,分别求出后相加即可;(2)先根据条件得到面,通过平移将异面直线转化为同一个平面内的直线夹角即可【小问1详解】上下两个扇形的面积之和为:两个矩形面积之和为:4侧面圆弧段的面积为:故这个几何体的表面积为:【小问2详解】如下图,将直线平移到下底面上为由,且,,可得:面则而G是弧DF的中点,则由于上下两个平面平行且全等,则直线与直线的夹角等于直线与直线的夹角,即为所求,则则直线与直线的夹角为18、(1)(2)【解析】(1)由圆的性质可得圆心在线段的垂直平分线上,由题意求出的垂直平分线方程,从而得出圆心坐标,再求出半径,得到答案.(2)由题意先求出满足条件的直线方程,求出圆心到直线的距离,由垂经定理可得圆的弦长.【小问1详解】由题意设圆C的标准方程为设的中点为,则,由圆的性质可得则,又,所以则直线的方程为,即则圆C的圆心在直线上,即,故所以圆心,半径所以圆C的标准方程为【小问2详解】过斜率为的直线方程为:圆心到该直线的距离为所以19、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导数求得单调递增,结合,得到,进而证得.【详解】(1)由函数,可得,当时,,在内单调递减;当时,由有,当时,,单调递减;当时,,单调递增.(2)证明:令,则,当时,,单调递增,因为,所以,即,当时,可得,即【点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:的圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.22、(1);(2)或或.【解析】(1)根据已知条件,求得的方程组,解得,即可求得椭圆的方程;(2)对的取值进行分类讨论,当时,根据三点共线求得,联立直线方程和椭圆方程,利用韦达定理,结合直线交椭圆两点,代值计算即可求得结果.【小问1详解】对椭圆,令,故可得,则,故,则,又,,故可得,则椭圆的方程为:.【小问2详解】直线与y轴交于点P,故可得的坐标为,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大学兼职教师课程设计与开发服务合同3篇
- 2024年联合研发合同
- 2024年高端餐饮门面租赁管理协议范本2篇
- 2024年高端装备制造业人才培训服务合同
- 行政前台工作总结15篇
- 医疗器械质量管理、专业技术及售后服务培训试题及答案
- 2024甲乙双方物流运输服务担保合同
- 2025年度财务预测与预算编制保密服务协议3篇
- 黑龙江冰雪体育职业学院《创新创业与营销策划》2023-2024学年第一学期期末试卷
- 内蒙古建筑职业技术学院《法律文献检索》2023-2024学年第一学期期末试卷
- 血液透析SOP2021完整版课件
- (高速公路)工程施工便道施工方案-
- 电磁阀培训(精选)课件
- 家禽常用原料代谢能估测表
- 古代诗歌鉴赏思想内容ppt
- 初一上学期期末测试卷英语
- 上海沃陆变频器VL600型变频器说明书概要
- 2023年高考物理一轮复习:抛体运动与圆周运动(附答案解析)
- VRV空调技术要求和质量标准
- Q∕GDW 10721-2020 电力通信现场标准化作业规范
- 公安警察工作汇报PPT模板课件
评论
0/150
提交评论