版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题27不等式(组)应用之几何问题【例题讲解】如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止.(Ⅰ)直接写出三个点的坐标;(Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;(Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围.【详解】解:(Ⅰ)轴,,,轴,,;(Ⅱ)∵点运动的路径长为,所用时间为7秒;点运动的路径长为,所用时间为秒,∴根据其中一点到达终点时运动停止可知,运动时间的取值范围为,点运动到点所用时间为4秒,点运动到点所用时间为,因此,分以下两种情况:①如图,当时,,则三角形的面积为;②当时,如图,过点作,交延长线于点,,,则三角形的面积为,,,综上,当时,三角形的面积为;当时,三角形的面积为;(Ⅲ)①当时,则,解得,则此时的取值范围为;②当时,则,解得,则此时的取值范围为,综上,当三角形的面积的范围小于16时,或.【综合解答】1.小明同学在计算一个多边形(每个内角小于)的内角和时,由于粗心少算了一个内角,结果得到的总和是,则少算了这个内角的度数为________.【答案】##度【分析】n边形的内角和是,少计算了一个内角,结果得,则内角和是与的差一定小于180度,并且大于0度.因而可以解方程,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】解:设多边形的边数是n,依题意有,解得:,则多边形的边数n=14;多边形的内角和是;则未计算的内角的大小为.故答案为.【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.2.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b,已知不等式x△k≥2的解集在数轴上如图表示,则k的值是_____.【答案】4【分析】根据新运算法则得到不等式2x﹣k≥2,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【详解】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥2,∴2x﹣1≥k+1且2x﹣1≥﹣3,∴k=﹣4.故答案填:﹣4.【点睛】本题考查了在数轴上表示不等式的解集、解一元一次不等式.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.将长为4,宽为(大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第次操作后,剩下的长方形恰为正方形,则操作终止.当时,的值为___________.【答案】3或【分析】根据题意,第一次和第二次操作后,通过列不等式并求解,即可得到的取值范围;第三次操作后,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,第一次操作,当剩下的长方形宽为:,长为:时,得:∴当剩下的长方形宽为:,长为:时,得:∴∵∴第一次操作,当剩下的长方形宽为:,长为:;第二次操作,当剩下的长方形宽为:,长为:时,得:解得:∴当剩下的长方形宽为:,长为:时,得:解得:∴∵在第次操作后,剩下的长方形恰为正方形,且∴第三次操作后,当剩下的正方形边长为:时,得:解得:∵∴符合题意;当剩下的正方形边长为:时,得:解得:∵∴符合题意;∴的值为:3或故答案为:3或.【点睛】本题考查了一元一次方程不等式、一元一次方程的知识;解题的关键是熟练掌握一元一次方程不等式、一元一次方程的性质,从而完成求解.4.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的的值或取值范围是_________.【答案】0<≤或x=2.【分析】由题意可得当0<x≤△AQM是直角三角形,当
<x<2时△AQM是锐角三角形,当x=2时,△AQM是直角三角形,当2<x<3时△AQM是钝角三角形.【详解】解:当点P在AB上时,点Q在AD上时,此时△APQ为直角三角形,则0<x≤;当点P在BC上时,点Q在AD上时,此时△APQ为锐角三角形,则<x<2;当点P在C处,此时点Q在D处,此时△APQ为直角三角形,则x=2时;当点P在CD上时,点Q在DC上时,此时△APQ为钝角三角形,则2<x<3.故答案是:0<x≤或x=2.【点睛】本题主要考查矩形的性质和列代数式的知识点,解答本题的关键是熟练掌握矩形的性质,还要熟练掌握三角形形状的判断,此题难度一般.二、解答题(共0分)5.平面直角坐标系中,点A坐标为(2m-3,3m+2).(1)若点A在坐标轴上,求m的值:(2)若点A在第二象限内,求m的取值范围.【答案】(1)(2)【分析】(1)根据点在x轴上纵坐标为0求解;(2)根据点在第二象限横坐标小于0,纵坐标大于0求解.(1)解:∵点A在x轴上,∴,解得:.(2)∵点A在第二象限内,,解得,.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,各个象限的点的特征,掌握以上知识是解题的关键.6.如图,“开心”农场准备用的护栏围成一块靠墙的矩形花园,设矩形花园的长为,宽为.(1)当时,求的值;(2)受场地条件的限制,的取值范围为,求的取值范围.【答案】(1)10;(2).【分析】(1)根据等量关系“围栏的长度为50”可以列出代数式,再将a=30代入所列式子中求出b的值;(2)由(1)可得a,b之间的关系式,用含有b的式子表示a,再结合,列出关于b的不等式组,解不等式组即可求出b的取值范围.(1)解:由题意,得,当时,.解得.(2)解:∵,∴,,∴解这个不等式组,得.答:矩形花园宽的取值范围为.【点睛】此题主要考查了列代数式及不等式组的应用,正确理解题意得出关系式及不等式组是解题关键.7.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.(1)求,的坐标.(2)若点为轴正半轴上的一个动点.①如图1,当时,与的平分线交于点,求的度数;②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.【答案】(1)点的坐标为,点的坐标为;(2)①45°;②【分析】(1)根据可得,,,,即可求得a、c的值,坐标可求;2)①作PH∥AD,根据角平分线的定义、平行线的性质计算,得到答案;②连接AB,交y轴于F,根据点的坐标特征分别求出S△ABC、S△ABD,根据题意列出不等式,解不等式即可.【详解】解:(1)由题意得,,,,解得,,,则点的坐标为,点的坐标为;(2)①如图1,作,∵,∴,∵,∴,∵,∴,∴,∵与的平分线交于点,∴,,∴,∵,,∴,,∴;②连接,交轴于,∵,∴,即,∵,,,∴,过作轴的平行线,作、垂直,交于点、,,,由题意得,,解得,,∵点为轴正半轴上的一个动点,∴.【点睛】本题考查的是二元一次方程的定义、平行线的性质、坐标与图形性质、三角形的面积计算,一元一次不等式,掌握平行线的性质、三角形面积公式是解题的关键.8.△ABC在平面直角坐标系内如图1摆放,A、C两点的横坐标都是5,BC∥x轴.已知B点坐标为(-3,m),AB交y轴于点D,且AC=BC.
(1)填空:BC=_____;△ABC的面积为______;用m表示点A的坐标为______.(2)射线BO交直线AC于点Q,若△ABQ的面积为16,试求m的值(3)如图2,点D在y轴负半轴上,∠BAC的三等分线AP与∠BOD的角平分线OP交于点P,其中∠BAC=3∠BAP=45°.若∠P>2∠B,试求∠BOD的取值范围.【答案】(1)8,32,(5,m+8);(2)m=或m=(3)40°<∠BOD<45°.【分析】(1)根据A、C点横坐标为5,说明AC⊥x轴,根据与x轴,y轴平行的直线上点坐标特征确定点A坐标,再根据面积公式求解;(2)通过证明三角形相似,利用其性质表示出Q点的坐标,再根据面积公式列方程求解;(3)设∠BOP=∠POD=α,利用外角等于不相邻两个内角和及已知角的关系将∠P和∠B用α表示,根据题意列不等式求α的解集,再结合外角大于任何一个不相邻的内角确定∠BOD的范围.【详解】解:(1)∵A、C点横坐标为5,B点坐标为(-3,m),∴BC=5(3)=8,∵BC∥x轴,∴∠ACB=90°∵AC=BC∴S△ABC=∵B(-3,m),BC=AC=8,∴A(5,m+8);(2)如图,过B作BH⊥x轴,垂足为H,AC与x轴交于点G,∴∠BHO=∠QGO=90°,∠HOB=∠GOQ,∴△HOB∽△GOQ,∴,∴,∴QG=,∴Q的坐标为,∴AQ的长度为,∵△ABQ的面积为16,∴,解得:m=或m=.(3)如图,AP与y轴交于点N,点M在y轴上,∵OP是∠BOD的角平分线,∴∠BOP=∠POD,∵∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAC=3∠BAP=45°∴∠BAP=15°,∠CAP=30°,∵OM∥AC,∴BDM=∠BAC=45°,∠PNM=∠PAC=30°,设∠BOP=∠POD=α,∵∠BDM=∠B+∠BOD,∴∠B=∠BDM∠BOD=45°2α,∵∠PNM=∠POM+∠P,∴∠P=∠PNM∠POM=30°α,∵∠P>2∠B,∴30°α>2(45°2α)解得,α>20°∴∠BOD>40°∵∠BDM>∠BOD,∴∠BOD<45°∴40°<∠BOD<45°.【点睛】本题考查平面直角坐标系坐标与图形,理解点坐标的意义,将坐标转化线段长是解答此类问题的关键;同时利用外角定理表示角之间的关系,也是解答此题的关键之处.9.如图,长方形AOCB的顶点A(m,n)和C(p,q)在坐标轴上,已知和都是方程的解,点B在第一象限内.(1)求点B的坐标(2)将线段AB沿着y轴负半轴方向向下平移6个单位长度到线段EF,点P从点O出发以每秒1个单位长度沿的路线做匀速运动,同时点Q也从点O出发以每秒2个单位长度沿的路线做匀速运动.当点Q运动到点C时,两动点均停止运动,设运动的时间为秒,四边形OPCQ的面积为S.①当时,求的值;②若时,求的取值范围.【答案】(1)B(2,3);(2)①5;②或3<t≤4.【分析】(1)根据坐标轴上的点得出m=q=0,再根据二元一次方程的解分别求出n和p,得到A和C的坐标,从而得到点B坐标;(2)①当t=2时,得到OP和OQ的坐标,再计算结果;②根据运动过程分当t≤3时,当3<t≤4时,当4<t≤5时和当t>5时,四种情况分别求解.【详解】解:(1)∵A(m,n)和C(p,q)在坐标轴上,∴m=0,q=0,代入中,可得:n=3,p=2,∴A(0,3),C(2,0),∵点B在第一象限,∴B(2,3);(2)①当t=2时,点P在OA边上,点Q在EF边上,OP=2,OQ=4,∴EQ=1∴S四边形OPCQ=S△POC+S△QOC=;②由运动过程可知:当t≤1.5时,点P在OA上,点Q在OE上,OP=t,OQ=2t,此时若要,则,解得:,∴此时t的取值范围是;当1.5<t≤2.5时,点Q在EF上,点P在OA上,此时S四边形OPCQ=S△POC+S△QOC=,解得t<2,∴此时t的取值范围是当2.5<t≤3时,点Q在CF上,点P在OA上,此时S四边形OPCQ=S△POC+S△QOC=,解得,∴此种情况,不存在;当3<t≤4时,点P在AB上,点Q在CF上,S四边形OPCQ=S△POC+S△QOC=解得:t>,∴t的取值范围是:3<t≤4,综上:当时,t的取值范围是:或3<t≤4.【点睛】本题是四边形综合题目,考查了矩形的性质、坐标与图形、一元一次不等式、平移的性质、多边形的面积,本题综合性强,理解题意,弄清运动情形是解题的关键.10.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒.(1)当时,平方厘米;当时,平方厘米;(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值.【答案】(1)1;
(2)
(3)【分析】(1)根据三角形的面积公式即可求解;(2)根据题意列出不等式组故可求解;(3)分Q点在AB上、BC上和CD上分别列出方程即可求解.【详解】(1)当时,=1平方厘米;当时,=平方厘米;故答案为;;(2)解:根据题意,得解得,故的取值范围为;(3)当Q点在AB上时,依题意可得解得;当Q点在BC上时,依题意可得解得>6,不符合题意;当Q点在AB上时,依题意可得或解得或;∴值为.【点睛】此题主要考查不等式组与一元一次方程的应用,解题的关键是根据题意得到方程或不等式组进行求解.11.如图,某农场准备用80米的护栏围成一块靠墙的矩形花园,设矩形花园的长为x米,宽为y米.(1)当y=22时,求x的值;(2)由于受场地条件的限制,y的取值范围为16≤y≤26,求x的取值范围.【答案】(1)x=29;(2)27≤x≤32【分析】(1)由题意得2x+y=80,再将y=22代入即可求x;(2)由题意可得1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《位非税培训材料》课件
- 04版设备安装与购销合同协议
- 2024年度桥梁建设电焊工程专用合同2篇
- 2024版企业借款合同样式
- 2024年度舞蹈排练厅租赁协议
- 《基于PROFINET协议的安全IO设备设计与实现》
- 人教版八年级语文上册《周亚夫军细柳》教学课件
- 专业印刷服务合同协议书范本
- 高强度铝合金供货合同
- 水泥砂石购销协议模板
- 读音常考题型第一轮复习专项训练(试题)人教PEP版英语六年级上册
- 以循证医学为基础的静脉输液实践指南INS指南解读
- 建筑学专业基础知识必学必会考试题库(500题)
- 二年级数学欧利和他的懒弟弟优秀课件
- 220种食物的血糖生成指数(GI)表
- 生物化学实验智慧树知到答案章节测试2023年浙江大学
- 理工创新工坊智慧树知到答案章节测试2023年西安理工大学
- 演示文稿开放性骨折处理
- 我的家乡宁夏
- 国有企业干部选拔任用工作系列表格优质资料
- TCSCA 120038-2020 110kV及以上高压电缆建设管理服务要求
评论
0/150
提交评论