版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
npjComplexity
|(2024)1:151
npj|complexityArticle
/10.1038/s44260-024-00015-x
Correlatingmeasuresofhierarchical
structuresinartificialneuralnetworkswiththeirperformance
Checkforupdates
ZhuoyingXu1
,6
,YingjunZhu1
,6,BinbinHong
2
,XinlinWu3
,4
,5
,JingwenZhang3
,4
,5
,MufengCai3
,4
,5
,DaZhou
1
区&YuLiu
3
,4
区
ThisstudyemploystherecentlydevelopedLadderpathapproach,withinthebroadercategoryof
AlgorithmicInformationTheory(AIT),whichcharacterizesthehierarchicalandnestedrelationshipsamongrepeatingsubstructures,toexplorethestructure-functionrelationshipinneuralnetworks,
multilayerperceptrons(MLP),inparticular.Themetricorder-rateη,derivedfromtheapproach,isameasureofstructuralorderliness:whenηisinthemiddlerange(around0.5),thestructureexhibitstherichesthierarchicalrelationships,correspondingtothehighestcomplexity.Wehypothesizethatthehigheststructuralcomplexitycorrelateswithoptimalfunctionality.Ourexperimentssupportthis
hypothesisinseveralways:networkswithηvaluesinthemiddlerangeshowsuperiorperformance,andthetrainingprocessestendtonaturallyadjustηtowardsthisrange;additionally,startingneuralnetworkswithηvaluesinthismiddlerangeappearstoboostperformance.Intriguingly,thesefindings
alignwithobservationsinotherdistinctsystems,includingchemicalmoleculesandproteinsequences,hintingatahiddenregularityencapsulatedbythistheoreticalframework.
Itiswidelyrecognizedthattheperformanceofneuralnetworksdependsontheirarchitecture
1
.Ononehand,thedesignofthesestructuresisinspiredbybiologicalneuralnetworks.Forinstance,convolutionalnetworksdrawfromtheconceptofvisualreceptivefields
2
,3
.Ontheotherhand,theintroductionofnewnetworkarchitecturesoftenleadstosignificantperformanceleaps,suchastheTransformer,whichincorporatesaspectsofattentionmechanisms
4
.Whileitisknownthatthearchitectureofartificialneuralnetworksisakeydeterminantoftheirfunctionalityandperformance,inpractice,thedevelopmentofneuralnetworksismovingtowardsincreas-inglylargerscales,morecomplexstructures,andgreaternumbersoflayers.Forexample,thescaleofnetworks,intermsofthenumberofparameters,hasgrownfromthethousandsinLeNettothemillionsinAlexNet,andthentothebillionsinGPT;whilethearchitecturehasevolvedfromLeNettoAlexNet,VGG,GoogLeNet,variousAutoencoders,andmorerecentlytoTransformer
5
-9
.
Whilelarge-scalenetworksdemonstrateformidablecapabilitiesinpracticalapplications,theincreasedcomplexityofneuralnetworksimpliesaneedformoretrainingdata,longertrainingtimes,higherexpenses,andagrowingconcernforenergyconsumption
10
.Ifitwerepossibletoestimatetheappropriateneuralnetworkstructureandits
complexityforspecifictasksinadvance,substantialcomputationalresourcescouldbesaved.Additionally,insituationswherecompu-tationalresourcesarelimited,suchasinsmalldevicesorspaceequipment,itmightbenecessarytousethesmallestpossibleneuralnetworks
11
.Therefore,anunderstandingofthegenerallawsgov-erningtherelationshipbetweenthestructureandperformanceofneuralnetworksalsoholdssignificantpracticalvalue.
Researchersareactivelyinvestigatingtherelationshipbetweenneuralnetworkstructuresandtheirperformancefromvariousperspectives.Byrepresentingneuralnetworksasgraphs,onecanemployexistinggraphmetricsordefinenewonestoelucidatethelinkbetweennetworkperfor-manceandthesemetricsacrossdifferentapplications
12
,13
.Someresearchdirectlyfocusesontheparticularstructureofnetworks
14
-16
,whileotherstudiesintroducenovelneuralnetworkstructurestoexaminetheirimpactonnetworkperformanceenhancement
17
.Thesestudieshaveraisednumerousfundamentalquestionsthatareurgentlyinneedofbeinganswered.Questionssuchaswhetherthereisasystematicrelationshipbetweenneuralnetworkstructuresandtheirperformance,orwhetherhigh-performingneuralnetworkspossessdistinctstructuralcharacteristics,arecentraltothisresearcharea.
1SchoolofMathematicalSciences,XiamenUniversity,Xiamen,China.2DepartmentofPhysics,FacultyofArtsandSciences,BeijingNormalUniversity,
Zhuhai,China.3DepartmentofSystemsScience,FacultyofArtsandSciences,BeijingNormalUniversity,Zhuhai,China.4InternationalAcademicCenterof
ComplexSystems,BeijingNormalUniversity,Zhuhai,China.5SchoolofSystemsScience,BeijingNormalUniversity,Beijing,China.6Theseauthorscontributedequally:ZhuoyingXu,YingjunZhu.e-mail:
zhouda@
;
yu.ernest.liu@
/10.1038/s44260-024-00015-x
Article
Hierarchyisanimportantfeatureamongvariousstructuralchar-acteristics.Intheresearchintobothartificialandbiologicalneuralnetworks,theimportanceandthepotentialuniversalityofhierarchicalstructureshavebeendiscovered(seethetwoparagraphsattheendofthissection).However,quantitativelycharacterizingthehierarchicalstructureofneuralnetworksisnotatrivialtask.TheLadderpathapproach,arecentlydevelopedmathe-maticaltoolwithinthebroadercategoryofAlgorithmicInformationTheory(AIT),offersarigorousanalyticalapproachforexaminingthestructuralinformationofatargetsystem
18
,19
.
Thisapproachpinpointsrepeatingsubstructures(or“modules”)withinthetargetsystem,whichthemselvesmayconsistofevensmallerrepeatingunits,progressivelybreakingdowntothemostbasicbuildingblocks.Theserepeatingsubstructurescanthenbereorganizedintoahier-archical,modular-nested,tree-likestructure.Oneextremescenarioisasystemwithaflattenedhierarchy,essentiallydevoidofrepeatingstructures,andcanbelikenedtocompletelydisorderedstructuresorentirelyrandomgeneticsequences.Theotherextremeinvolvessimplerepetitionofsmallsubstructures,likeadoublingsequence(2becomes4,4becomes8,8becomes16,andsoforth),whichiscomparabletocrystals.Systemsdeviatingfromtheseextremesandpositionedinthemiddlearethosewitharichhierarchicalstructure.Wehypothesizethatthedegreeofrichnessinthishierarchicalstructureispositivelycorrelatedwiththeperformanceofneuralnetworks.
TheLadderpathapproachhasrecentlybeensuccessfullyappliedinlivingandchemicalsystems,suchasanalyzingtheevolutionofproteinsequences
19
;asimilarmethodhasalsobeenusedtoinvestigatetheoriginsoflifethroughtheanalysisofmolecularstructure
20
.Theapplicabilityofthisapproachintheseareasislinkedtothetightstructure-functionrelationshipprevalentinevolutionarysystems(e.g.,thestructureofmoleculesdictatestheirphysicochemicalproperties,andthestructureofdrugmoleculesdeterminestheirbindingwithreceptorproteins).Similarly,thisstructure-functionrelationshipislikelytoexistinanotherkeyevolutionarysystem:intelligence.ThispaperemploystheLadderpathapproachtoanalyzethestructure-functionrelationshipinartificialneuralnetworks.Weacknowl-edgethatourworkiscurrentlylimitedtomultilayerperceptrons(MLP)andnetworksofconstrainedsizesduetothetechnicalchallengesofladderpathcalculations,aswehaveshownthatthesecalculationsareanNP-hardproblem
18
.However,ourprimarymotivationistodemonstratetheeffec-tivenessandfeasibilityofthisAITapproachinstudyingthehierarchicalandnestedstructuresofartificialneuralnetworks.Moreimportantly,coupledwiththerecentworkonproteinsequencesasdemonstratedin
19
,thistypeof
structure-functionrelationshipappearstomanifestinseveralseemingly
unrelatedsystems,suggestingacertainuniversalitythatmeritsattention.
Beforemovingforward,letusreviewthepreviousliteratureonhier-archicalstructures.Thefirstpartisabouthierarchicalstructuresinartificialneuralnetworks.Forcertainspecificnetworks,suchasreservoircomputing,whichisanincreasinglyprominentneuralnetworkframeworkforstudyingdynamicalsystems
21
,researchhasshownthattheircomputationalcapacityismaximizedwhentheyareinacriticalstate
22
(althoughsomescholarsbelievethatthismaximizationofcomputationalcapacityisconditionalandonlytrueunderspecificcircumstances
23
).In2021,Wangetal.discoveredthatinwell-trainedreservoirnetworks,thenodessynchronizeinclusters,andthesizedistributionofthesynchronizationclustersfollowsapowerlaw
15
.Itisimportanttonotethatapower-lawdistributionisoftenakeycharacteristicofacriticalstate,andthisdistributionistypicallyamanifes-tationofarichlyhierarchicalstructure
24
.In2020,Leskovecetal.proposedamethodtorepresentneuralnetworksasgraphs,termedrelationalgraphs,whichcharacterizetheinter-layerconnectionsofneuralnetworks
13
.Theydiscoveredthatincaseswhereaneuralnetworkperformswell,theaveragepathlengthandclusteringcoefficientofitscorrespondingrelationalgraphtendtoalwaysfallwithinacertainrange(itisnotablethatthesetwoindicesintuitivelyrepresentcharacteristicsthataretypicallyoppositeinnature).Furthermore,thetrainingprocesstendstoshiftthesetwostructuralmetricstowardsthisrange.In2018,Yingetal.introducedadifferentiablegraphpoolingmethod,designedtointegratecomplexhierarchicalrepresentations
ofgraphs,andfurtherconnectdeepergraphneuralnetworkmodelstotheserepresentations
16
.Thismethodhassignificantlyenhancedaccuracyingraphclassificationbenchmarktaskscomparedtootherpoolingmethods,underscoringthecriticalroleofutilizinghierarchicalinformationforneuralnetworkperformance.In2016,Bengioetal.proposedthreecomplexitymetricsforthearchitectureofrecurrentneuralnetworksfromagraphperspective:recurrentdepth,feedforwarddepth,andrecurrentskipcoeffi-cient.Experimentshaverevealedthatincreasingrecurrentandfeedforwarddepthcanenhancenetworkperformance,andaugmentingtherecurrentskipcoefficientcanimproveperformanceintaskswithlong-termdependencies
12
.
Then,thisparagraphcovershierarchicalstructuresinbiologicalneuralnetworks.Inrealbiologicalneuralnetworks,similarstudieshavealsoshownapositivecorrelationbetweenhierarchicalstructureandgoodperformance.Baumetal.analyzedsamplesfromyouthsaged8–22inthePhiladelphiaNeurodevelopmentalCohorttostudytheevolutionofstructuralbrainnetworksovertime
25
.Theyobservedthatasindividualsage,thenetworkstructureundergoesamodularseparationprocess,whereconnectionswithinmodulesstrengthenandinter-moduleconnectionsweaken.Fur-thermore,thisseparationappearstobebeneficialforthedevelopmentofbrainfunctionsinyouths.Vidaurreetal.,usingwhole-brainresting-statefMRIdata,employedmethodssuchashiddenMarkovchainsandhier-archicalclusteringtoanalyzetheorganizationaldynamicsofbrainnetworksovertime
26
.Theydiscoveredadistincthierarchicalstructurewithinbraindynamics,whichshowssignificantcorrelationswithindividualbehaviorandgeneticpredispositions.Theirresearchunderscoresacloseconnectionbetweenthehierarchicalstructureandfunctioninactualbrainnetworks.In2021,Zhouetal.studiedtherelationshipbetweennetworkstructureanditsdynamicpropertiesfromdifferentperspectives.Theydiscoveredthatmodularnetworktopologiescansignificantlyreducebothoperationalandconnectivitycosts,thusachievingajointoptimizationofefficiency
27
.Alsoin2021,Luoreviewedcommoncircuitmotifsandarchitecturalplans,exploringhowthesecircuitarchitecturesassembletoachievevariousfunctions
28
.Thesecircuitmotifscanbeconsideredas“words”,whichcombineintocircuitarchitecturesthatmightoperateatthelevelof“sen-tences”.Thisworkemphasizestheimportanceofhierarchicalstructures:onlyaftergainingabetterunderstandingofthenestedmodularhierarchicalstructuresamongtheseneuronalconnectionscanwebegintounderstandthe“paragraphs”(e.g.,brainregions)andeventuallythe“article”,whichmayinspiremoreimportantadvancesinartificialintelligence.
Methods
RecaptheLadderpathapproach
TheLadderpathapproach,detailedin
18
,19
,offersaquantitativeapproachtoanalyzestructuralinformationinsystems,rangingfromsequences,mole-culestoimages.Ititerativelyidentifiesrepeatingsubstructures,calledlad-derons,whichareessentiallyreusedmodules.Thesesubstructuresmaybecomposedofsmallerrepeatingunits,cascadingdowntothesystem’smostbasicbuildingblocks.Theseladderonscollectivelyformahierarchical,nested,tree-likestructureknownasaladdergraph.
UsingthesequenceABCDBCDBCDCDACAC(denotedasX)asanexampletoillustrate,theladdergraphiscomputedasshowninFig.
1
,demonstratinghowtoconstructthetargetsequenceXfromthefourbasicbuildingblocksA,B,C,andDinthemostefficientmanner.First,combineCandDtoconstructCD,andAandCtoconstructAC,whichtakes2steps;thencombiningBwithCDtoconstructBCDisanotherstep.Next,con-structthetargetsequenceXusingalreadygeneratedsubstructures(or“modules”)andbasicbuildingblocks.ThisinvolvescombiningA,BCD,BCD,BCD,CD,AC,andAC,thustaking6steps;intotal,thisis9stepssofar;thefinalstepinvolvesoutputtingX.Therefore,constructingXinthemostefficientmannertakes10stepsintotal.
Xhas16letters,butonly10stepswereneededduetothereuseofsomerepeatingsubstructures:forexample,thepreviouslyconstructedCDisreusedinconstructingBCD;whileBCDappearsthreetimes,thesubsequentinstancesofBCDcandirectlyusetheinitiallyconstructedBCD,saving
npjComplexity
|(2024)1:152
/10.1038/s44260-024-00015-x
Article
Fig.1|Laddergraphsofdifferentsystems.aLaddergraphofashortsequence,forillustrativepurposes.Thegrayhexagonsrepresentthebasicbuildingblocks,andthegraysquaresrepresenttheladderons.Inb–d,basicbuildingblocksareomitted,andladderonsarerepresentedasgrayellipses.bLaddergraphofacompletelyrandomanddisorderedsequence,withη=0.04,BBDCDDCAACABACCDADA-
BABDDD...,whichshowsminimalhierarchicalrelationshipsamongrepeating
substructures.cLaddergraphofasequencecomposedentirelyofA's(themost
orderedsequence),withη=1.TheladderonsareAA,AAAA,AAAAAAAA,etc.dLaddergraphofthesequenceABABABDABABBAABAABCACABABDA...,
whichhasη=0.53.Thissequencedisplaystherichesthierarchicalstructure.Thesequencesshownin(b-d)areeachcomposedofthebasicbuildingblocksA,B,C,andD,andhavealengthof300,representingthreetypicalcategoriesofsequences.
manysteps.ThisprincipleofreuseisafundamentalconceptinAITandtheLadderpathapproach.
Notethatinourexample,somestepscanbeinterchanged,suchaswhethertoconstructCDorACfirst,whichdoesnotmatter.However,theorderbetweenCDandBCDmustnotbereversed,becauseBCDisbasedonCD.Therefore,theladdergraphalsocorrespondstoapartiallyorderedmultiset,whichcanbedenotedas
{B;D;A(2);C(2)/AC;CD/BCD(2)}(1)
Stepswithinthesamelevel(i.e.,separatedby“/”)canbeinterchanged,butnotacrosslevels.Thisiswhythesequenceexhibitsahierarchicalstructure.
Now,wecanintroduceseveralimportantnotionswithintheLadder-pathapproach.Intheexampleabove,the“10steps”aredefinedastheladderpath-indexofX,whileanotherquantity,theorder-indexω,isdefinedasthelengthofXminusitsladderpath-index,whichisω(X)=16-10=6.Mathematically,wehaveshowninref.
18
thatωalwaysequalsthesumofthe“reducedlengths”lofeachladderon(wherethereducedlengthisdefinedasthelengthofeachladderonminusone).Inthiscase,ω(X)=lAC+lCD+2×lBCDwherelACisthelengthofACminus1,namely(2−1),lCD=2−1,andlBCD=3−1;Themultiplierof2forlBCDisbecauseitsmultiplicityinthepartiallyorderedmultiset,asshowninEq.(
1
),is2,indicatingthatitwasreusedtwice.Thus,theorder-indexωcountsthesizesofallrepeatingsubstructuresinasystem,therebyessentiallychar-acterizinghoworderedasystemisinanabsolutemeasure.Foramoredetailedtheoreticalexplanationandmathematicalderivation,pleaserefertoref.
18
.
Thisrecapmaybeconsideredlengthy,whichcouldseemover-whelming,andsomenotionsmightappearunnecessaryatfirstglance.Infact,thisisbecausetheLadderpathapproachwithinAITwasnotspecificallydevelopedtocharacterizeneuralnetworksbutwasdevelopedfromamoregeneralperspective,whichmaymakeitseemverbose.However,ithasbeensuccessfullyappliedinseeminglyunrelatedfieldssuchasproteinsequences
19
,andoursubsequentfindingsalsodemonstratethatthisapproachperformswellinartificialneuralnetworks.Thisindicatesthattheapproachandtherelationshipsbetweenthehierarchicalstructureand
performanceitdescribesareuniversaltoacertainextent,makingitworthwhile.
Ladderpathcharacterizeshierarchicalstructures
Aftertherecap,weproceedbytakingmorecomplexsequencesasexamples.Wewilldemonstratetheladdergraphsofthreetypicalcategoriesofsequences:minimalrepetition,akintocompletelyrandom,disorderedsystems(Fig.
1
b);simplerepetition,similartoacrystallinestructure,wherethepatternprogressesfrom2to4,4to8,8to16,andsoon(Fig.
1
c);andtheonesthatliebetweenthesetwoextremes,showcasingtherichesthierarchicalstructure(Fig.
1
d).
Tobettercharacterizethehierarchicalstructure,wehave,inref.
19
,definedarelativemeasureontopoftheabsolutemeasureω,calledtheorder-rateη.Tobeginwith,letusfirstexaminethedistributionofωofvarioussequencesversustheirlengthsS,asshowninFig.
2
.ForagivenlengthS,wecanobservethatωhasbothamaximumandaminimumvalue:themax-imum,denotedasωmax(S),correspondstosequencesthatarecompletelyidentical;theminimum,denotedasω0(S),correspondstopurelyrandomsequences.Theminimumvaluearisesbecause,insequenceswithafinitenumberofbases(herebeingA,B,C,andD),repeatingsubstructureswillinevitablyappearasthelengthincreases,meaningeventhepurelyrandomsequencewillnothaveanωofzero.Therefore,weneedtonormalizeit,leadingtothedefinitionoftherelativemeasureorder-rateη(x)forsequencex:
η(x):=ω(x)-ω0(S)(2)
ωmax(S)-ω0(S)
whereSisthelengthofthesequencex.Anηof0meanscompletedisorder(Fig.
1
b),1impliesfullorder(Fig.
1
c),andaround0.5indicatesarichlystructuredhierarchy(Fig.
1
d).
Infact,intheLadderpathapproach,ηisrelatedtothecomplexityofasystem.Asystemisnotconsideredcomplexifentirelyrandom(η≈0)orordered(η≈1);complexityemergesonlyintheintermediatestate(η≈0.5).ThisdistinguishesLadderpathfromsimilarconceptssuchasKolmogorov
npjComplexity
|(2024)1:153
/10.1038/s44260-024-00015-x
Article
npjComplexity
|(2024)1:154
complexity,additionchain,assemblytheory,andthe“adjacentpossible”
29
–31
.
Inthecontextofneuralnetworks,wecanapplytheLadderpathapproachtosystematicallyorganizethenetwork’srepeatingsub-structuresinanestedhierarchicalmanner.AsillustratedinFig.
3
a,b,thepartshighlightedbyred,yellow,andgreenlinesrepresentthesesubstructures(withthesamecolorindicatingidentical,reusedmodules).Fromthis,wecanestablishahierarchicalrelationship(andillustratetheladdergraph):theredsubstructureisencompassedwithinboththeyellowandgreenones.Nevertheless,directlycalcu-latingtheladdergraphisquitechallenging(andthisproblemisinherentlyNP-hard
18
).Hence,wefirsttransformthenetworkintoa
Fig.2|Distributionoftheorder-indexωforsequencesofvaryinglengths,illus-tratingthecalculationoftheorder-rateη.
setofsequencesandthencomputeit(themethodforthistrans-formationwillbedetailedinsection“Sequencerepresentationofaneuralnetwork”,andtherearealreadyalgorithmsdevelopedforcomputingladdergraphsofsequencesatthescaleof10,000inlength
19
).Finally,wehypothesizethattheneuralnetwork’sabilitytoextractandintegrateinformationisatitspeak(achievingitsbestperformance)whenitshierarchicalstructureistherichest(i.e.,whenmodulereuseandtinkeringaremostpronounced),correspondingtotheorder-rateηaround0.5.
Experimentsetup
Toinvestigatetheconnectionbetweenthestructureofaneuralnetworkanditsfunctionality,wechosearathersimpletask:recognizingwhetherathree-digitnumberisoddoreven.ThiswasaddressedusingaMLP.Theinputconsistsofthreeneurons,representingthehundreds,tens,andonesplace,respectively,whiletheoutputhastwoneuronsindicatingoddoreven.Thehiddenlayersvary,either1,2,3,or4layers,eachcomprisingadifferentnumberofneurons.Tosimplifytheanalysis,welimitedeachMLPtoamaximumof200edges.Withthisconstraint,anMLPwithonehiddenlayercouldhaveonly40distinctvariations:Giventheinputlayerhas3neuronsandtheoutputlayerhas2neurons,ifthehiddenlayerhas40neurons(wecandenotethisMLP[3,40,2]),thereareatotalof3×40+40×2=200edges;theMLP[3,41,2]wouldhave205edges.ForanMLPwithtwo,three,andfourhiddenlayers,weconstructed200distinctarchitecturesforeachcategory(suchas[3,7,17,2],[3,8,3,5,2],and[3,3,5,14,2]whichhave2,3,and3hiddenlayersrespectively),contributingtothetotalof640differentarchitectures.
Thenetworkconnectionweightswererandomlyinitialized,andall640architecturesunderwentanidenticaltrainingperiod,eachfor2000epochs.Duringthetraining,wemonitoredthechangesinperformance(measuredbyaccuracy)andthenetwork’sorder-rateη(calculatedbasedontheLad-derpathapproach),toexploretherelationshipbetweentheseaspects.Sec-tion“Results”presentstheevolutionaryandstatisticalrelationshipsbetweenstructureandfunction.
Fig.3|ThediagramillustratinghowtoemploytheLadderpathapproachtoanalyzeaneuralnetwork,andreorganizetherepeatingsubstructuresintoaladdergraph.aAschematicdiagramofanMLP.bAschematicdiagramoftheladdergraphofthisMLP.cRepresentinganMLPasasetofsequences.
/10.1038/s44260-024-00015-x
Article
Sequencerepresentationofaneuralnetwork
ToutilizethealgorithmbasedontheLadderpathapproach
19
forstudyingthestructure-functionrelationshipinneuralnetworks,weneedtouseasequenceorasetofsequencestorepresentaneuralnetwork’sstructure.Byenvisioninganeuralnetworkasasignal(i.e.,theinput)propagationpro-blemoraninformationflowproblemwithinanetwork,thecollectionofallpathsthatthesesignalstraversecanrepresentthenetworkstructure.Sincetheconnectionweightsbetweenneuronsarerealnumbers,wefirstneedtocoarse-grainthem,usingdifferentsymbolstorepresentweightswithinthesamerange.
Thehigherthedegreeofcoarse-graining,themoreconducivetheextractedinformationisforsequenceanalysis;thelowerthedegreeofcoarse-graining,themoreinformationretained.However,thisalsoresultsinmoreunnecessarydetails,whichcanmakesubsequentanalysismoredif-ficult.Therefore,weconductedexperimentswithvariousdegreesofcoarse-grainingtofindabalancethatisaslargeaspossiblewithoutsignificantlydiminishingfunctionalperformance.Fortheparticularsystemsweselected,ournumericalexperimentsshowedthatwhenthecoarse-grainingintervalis
Order-rateη
Fig.4|Thedistributionoftheorder-rateηvs.theaccuracyintheodd-even
recognitiontaskperformedbytheneuralnetworks.Thestatisticsincludealloftheaforementioned640differentarchitectures.
settoamaximumof0.1,ithasaminimalimpactontheneuralnetwork’sperformance(seeSupplementaryNote1fordetailedinformation).
Subsequently,weobtaintheappropriatelycoarse-grainedgraph,andwecanconvertthegraphintoasetofsequences.Neuronsarethenodesofthisgraph,andnodeswithinthesamelayerareassignedthesamesymbolduetotheirsharedactivationfunction.Connectionsbetweenneuronsaretheedgesofthegraph,andedgeswithuniqueweights(discretizedaspre-viouslymentioned)areconsideredtocarrydistinctinformation,andarethusrepresentedusingdifferentsymbols.Forexample,thepathhighlightedingrayinFig.
3
canbedenotedasAzBxC.Throughthismethod,wecandetaileverypathaninputsignaltraverses,andaggregatethesepathsintoasetofsequencestodepictthegraph.WecanthenemploytheLadderpathapproachtoexaminethesequences,andtherebyinvestigatethechar-acteristicsoftheneuralnetwork’sstructure.
Results
Bestperformancewhenthehierarchicalstru
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧房转让协议书
- 2024年度二手房产租赁维修合同3篇
- Unit3DatesMoreReadingandWriting(课件)粤人版英语五年级上册
- 二零二四年度人工智能教育平台合作开发合同
- 供货服务合同
- 苗木供需协议书2024年定制
- 失语症的治疗
- 2024年度战略合作协议服务内容扩展
- 铝材质量检测与评估合同(2024版)
- 手术室感控知识培训内容
- 2022年北京城市副中心投资建设集团有限公司校园招聘笔试试题及答案解析
- 小学语文人教六年级上册《月光曲》-课件
- 公诉书格式范文(推荐十八篇)
- 椿林麻辣烫食品安全管理制度
- 老年人能力评定总表(含老年人日常生活活动能力、精神状态与社会参与能力、感知觉与沟通能力、老年综合征罹患情况)
- 《雪落在中国的土地上》课件(57张)
- 旅行社团队确认书
- Python入门基础教程全套课件
- 大学计算机基础实践教程实践心得
- 正大集团标准化养猪及“四良配套”技术介绍课件
- 《语言学纲要》修订版课后练习题
评论
0/150
提交评论