![2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第1页](http://file4.renrendoc.com/view12/M02/18/04/wKhkGWcLmImATAZRAAH8TfICNbY510.jpg)
![2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第2页](http://file4.renrendoc.com/view12/M02/18/04/wKhkGWcLmImATAZRAAH8TfICNbY5102.jpg)
![2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第3页](http://file4.renrendoc.com/view12/M02/18/04/wKhkGWcLmImATAZRAAH8TfICNbY5103.jpg)
![2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第4页](http://file4.renrendoc.com/view12/M02/18/04/wKhkGWcLmImATAZRAAH8TfICNbY5104.jpg)
![2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第5页](http://file4.renrendoc.com/view12/M02/18/04/wKhkGWcLmImATAZRAAH8TfICNbY5105.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年山东省莱芜市牛泉镇刘仲莹中学九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1002、(4分)下列各式的计算中,正确的是()A. B. C. D.3、(4分)某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为A. B.C. D.4、(4分)若线段AB=2,且点C是AB的黄金分割点,则BC等于()A.5+1 B.3-5 C.5+1或3-55、(4分)一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A. B.13 C.6 D.256、(4分)一元二次方程配方后可变形为().A. B.C. D.7、(4分)某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得()A. B.C. D.8、(4分)如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)判断下列各式是否成立:=2;=3;=4;=5类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,10、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.11、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.12、(4分)式子有意义的条件是__________.13、(4分)关于x的不等式组的解集为﹣3<x<3,则a=_____,b=_____.三、解答题(本大题共5个小题,共48分)14、(12分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.15、(8分)有一个四边形的四边长分别是,且有.求证:此四边形是平行四边形.16、(8分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?17、(10分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.18、(10分)如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.(1)若矩形ABCD是正方形,求CD的长;(2)若AD:DC=2:1,求k的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一元二次方程化成一般式为________.20、(4分)如图,在四边形中,,,,,且,则______度.21、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.22、(4分)如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为_____.23、(4分)如图,菱形ABCD的边长为8,,点E、F分别为AO、AB的中点,则EF的长度为________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.25、(10分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?26、(12分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:﹣=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2、B【解析】
根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.3、C【解析】
水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.【详解】因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.故选C.本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.4、D【解析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.【详解】解:当AC<BC时,BC=5-12AB=当AC>BC时,BC=2-(5-1)=故选:D.本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(5-15、A【解析】试题分析:∵直角三角形的两条直角边的长分别为5,12,
∴斜边为=13,
∵S△ABC=×5×12=×13h(h为斜边上的高),
∴h=.
故选A.6、C【解析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即.故选C.此题考查的是配方法,掌握完全平方公式的特征是解决此题的关键.7、D【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.【详解】根据题意,得.故选:.此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.8、B【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<“>”要用空心圆点表示.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
类比上述式子,即可两个同类的式子,然后根据已知的几个式子即可用含n的式子将规律表示出来.【详解】,用字母表示这一规律为:,故答案为:,.此题考查二次根式的性质与化简,解题关键在于找到规律.10、8.4.【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x,再求出∠BCG=30°,BG=BC=3,由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6,∠CBG=60°,∴∠BCG=30°,∴BG=BC=3,在△BCG中,由勾股定理可得:∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:解得:故答案为:8.4本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.11、【解析】
连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.【详解】解:连结,作于,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,,,,长与宽的比为,即,故答案为:.此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.12、且【解析】
式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.【详解】式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.13、-33【解析】,,所以,解得.三、解答题(本大题共5个小题,共48分)14、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.【解析】
迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【详解】迁移应用:①证明:如图②
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
∴△DAB≌△EAC,②解:结论:CD=AD+BD.
理由:如图2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD•cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD.
拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等边三角形,
∴BA=BD=BC,
∵E、C关于BM对称,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四点共圆,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,
∴AH=HE=2.5,FH=4.5,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF==3=3.本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.15、见详解.【解析】
由题意可得出,易得,根据平行四边形的判定定理可得结论.【详解】证明:所以此四边形是平行四边形.本题考查了平行四边形的判定,灵活的利用完全平方公式及平方的非负性是解题的关键.16、10个【解析】
设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.17、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.试题解析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+1.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤2.∵在w=10m+1中,k=10>0,∴w的值随m的增大而增大,∴当m=2时,w取最大值,最大值为10×2+1=120,∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.考点:一次函数的应用,二元一次方程组的应用,解一元一次不等式.18、(1);(2)k=12【解析】【分析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且2CD=AD,从而可得2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作DG⊥AE,垂足为点G,在等腰直角三角形ADE中,求得DG=EG=2,继而求得OG长,从而可得点D(2,3),即可求得k.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADC=∠BCD=90°,∴∠ADE=∠BCF=90°,∵OE=OF=5,又∵∠EOF=90°,∴∠OEF=∠OFE=45°,FE=10,∴CD=DE=AD=CB=CF=;(2)∵四边形ABCD是矩形,∴AD=BC,∵由(1)得:AD=DE,BC=FC,且2CD=AD,∴2CD=DE=CF,∵DE+CD+FC=EF,∴DE=EF=4,作DG⊥AE,垂足为点G,由(1)得在等腰直角三角形ADE中,DG=EG=DE=2,∴OG=OE-EG=5-2=3,∴D(2,3),得:k=12.【点睛】本题考查了反比例函数与几何的综合,涉及到等腰直角三角形的性质、正方形的性质、矩形的性质等,熟练掌握相关性质和定理以及反比例函数比例系数k的几何意义是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
直接去括号,然后移项,即可得到答案.【详解】解:∵,∴,∴,故答案为:.本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.20、1【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21、1【解析】
利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.【详解】由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=1.故答案为1.本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.22、1【解析】
根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,EF=AD=12AB【详解】解:∵在△ABC中,D、E、F分别是AB、BC、AC的中点,∴DE=AF=12AC=2.5,EF=AD=12∴四边形ADEF的周长是(2.5+1.5)×2=1.故答案为:1.本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.23、2【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果【详解】∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∴OA=AB=4,∴OB=,∵点E、F分别为AO、AB的中点,∴EF为△AOB的中位线,∴EF=OB=2.故答案是:2.考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)1.【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新型绿色农业贷款合同正规范本1(二零二五版)
- 2025年度红砖新材料研发与应用合同
- 2025年度港口设备定期检修与维护合同
- 2025年度新型建筑用脚手架劳务分包合同范本
- 2025年度网络安全顾问服务协议范本
- 2025年度旅游合同担保与保全服务协议
- 2025年度建筑劳务施工合同补充条款合同范本
- 2025年度建筑工程施工组织设计编制合同范本
- 2025年度文化产业挂靠经营合同规范文本
- 2025年度建筑企业用工激励机制协议书
- 湘美版高中美术选修:绘画全册课件
- 宗教地理与宗教景观课件
- 2023年江苏省南京市中考化学试卷2
- 2023辽宁医药职业学院单招数学模拟试题(附答案解析)
- 2022年武汉协和医院医护人员招聘考试笔试题库及答案解析
- 2023届江苏省南京市联合体市级名校中考联考英语试题(含解析)
- 【完整版】防洪防汛应急(含人员避险转移)预案
- 大型活动标准化执行手册
- 工程勘察设计收费标准快速计算表(EXCEL)
- 甲基乙基酮2-丁酮MSDS危险化学品安全技术说明书
- 【大学】挤出管材(P64)ppt课件
评论
0/150
提交评论