版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年山东省济南市莱芜区陈毅中学数学九年级第一学期开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列因式分解正确的是()A. B.C. D.2、(4分)已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是()A.2 B.﹣2 C.2或﹣2 D.任意实数3、(4分)若分式有意义,则x满足的条件是()A.x≠1的实数 B.x为任意实数 C.x≠1且x≠﹣1的实数 D.x=﹣14、(4分)如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A.1 B.2 C.3 D.5、(4分)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.小时 B.小时 C.或小时 D.或或小时6、(4分)直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A. B.C. D.7、(4分)已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个8、(4分)如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.10、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.11、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.12、(4分)使在实数范围有意义,则x的取值范围是_________.13、(4分)分解因式:x2-9=_▲.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:(1)如图2,连结CF,四边形ADFC一定是形.(2)连接DC,CF,FB,得到四边形CDBF.①如图3,当点D移动到AB的中点时,四边形CDBF是形.其理由?②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为.15、(8分)解下列各题:(1)分解因式:;(2)已知,,求的值.16、(8分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).17、(10分)如图,直线分别交x轴、y轴于A、B两点,直线BC与x轴交于点,P是线段AB上的一个动点点P与A、B不重合.(1)求直线BC所对应的的函数表达式;(2)设动点P的横坐标为t,的面积为S.①求出S与t的函数关系式,并写出自变量t的取值范围;②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.18、(10分)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=______°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若与最简二次根式是同类二次根式,则__________.20、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.21、(4分)2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.22、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.23、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.二、解答题(本大题共3个小题,共30分)24、(8分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.25、(10分)已知一次函数y=2x和y=-x+4.(1)在平面直角坐标中作出这两函数的函数图像(不需要列表);(2)直线垂直于轴,垂足为点P(3,0).若这两个函数图像与直线分别交于点A,B.求AB的长.26、(12分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据因式分解的定义及方法逐项分析即可.【详解】A.,故不正确;B.在实数范围内不能因式分解,故不正确;C.,正确;D.的右边不是积的形式,故不正确;故选C.本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.2、C【解析】
根据一元二次方程的解的定义把代入方程得到关于m的方程,然后解关于m的方程即可.【详解】把x=m代入方程2x2﹣mx﹣4=0得2m2﹣m2﹣4=0,解得m=2或m=﹣2,故选C.本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、A【解析】
直接利用分式有意义的条件得出:x﹣1≠0,解出答案.【详解】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.∴x满足的条件是:x≠1的实数.故选A.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4、C【解析】
根据平移的性质即可解答.【详解】如图连接,根据平行线的性质得到∠1=∠2,如图,平移的距离的长度故选C.此题考查平移的性质,解题关键在于利用平移的性质求解.5、C【解析】
利用众数及中位数的定义解答即可.【详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.6、C【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案【详解】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.7、C【解析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.8、D【解析】
由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,
∴一次函数图象一定经过第一、二象限,
∵k<0,
∴y随x的增大而减小,
∴一次函数不经过第三象限,
∴其图象不可能经过Q点,
故选:D.本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.二、填空题(本大题共5个小题,每小题4分,共20分)9、<<【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.【详解】解:当x=1时,=-2×1=-2;当x=-1时,=-2×(-1)=2;当x=-2时,=-2×(-2)=4;∵-2<2<4∴<<故答案为:<<.本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.10、【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.【详解】∵,
∴,去分母得:,解得:经检验是原方程的解.故答案为.本题除了定义运算外,还考查简单的分式方程的解法.11、2【解析】
由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;【详解】解:如图,∵反比例函数的解析式为,∴矩形AEOF的面积为1.由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,故答案为2.本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12、x≥【解析】
根据:对于式子,a≥0,式子才有意义.【详解】若在实数范围内有意义,则3x-1≥0,解得x≥.故答案为x≥本题考核知识点:二次根式的意义.解题关键点:理解二次根式的意义.13、(x+3)(x-3)【解析】
x2-9=(x+3)(x-3),故答案为(x+3)(x-3).三、解答题(本大题共5个小题,共48分)14、(1)平行四边;(2)①见解析;②【解析】
(1)根据平移的性质即可证明四边形ADFC是平行四边形;(2)①根据菱形的判定定理即可求解;②根据四边形CDBF的面积=DF×BC即可求解.【详解】解:(1)∵平移∴AC∥DF,AC=DF∴四边形ADFC是平行四边形故答案为平行四边(2)①∵△ACB是直角三角形,D是AB的中点∴CD=AD=BD∵AD=CF,AD∥FC∴BD=CF∵AD∥FC,BD=CF∴四边形CDBF是平行四边形又∵CD=BD∴四边形CDBF是菱形.②∵∠A=60°,AC=1,∠ACB=90°∴BC=,DF=1∵四边形CDBF的面积=DF×BC∴四边形CDBF的面积=此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.15、(1);(2)-12【解析】
(1)都含有因数,利用提取公因式法即可解答(2)先提取公因式xy,再根据完全平方公式进行二次分解,然后代入数据计算即可得解.【详解】解:(1).(2)∵,,∴,,.本题考查因式分解,熟练掌握运算法则是解题关键.16、4尺【解析】
杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(9-x)尺.利用勾股定理解题即可.【详解】0.9丈=9尺设杆子折断处离地面尺,则斜边为(9-)尺,根据勾股定理得:,解得:=4,答:折断处离地面的高度是4尺.此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.17、(1)y=2x+1;(2)①S=-2t+2(0<t<1);②点Q的坐标为(,).【解析】
(1)根据函数表达式求出点B坐标,结合点C坐标求出BC的表达式;(2)①根据三角形面积求法可得S与t的表达式;②过点P作PQ∥x轴,交BC于点Q,得出P和Q的坐标,利用平行四边形的性质建立方程求解即可.【详解】解:(1)直线y=-x+1与x轴、y轴交点坐标分别为A(1,0)、B(0,1)两点.设直线BC所对应的函数关系式为y=kx+1.∵直线BC经过点C(-2,0),∴-2k+1=0,解得:k=2,∴直线BC所对应的函数关系式为y=2x+1.(2)①由题意,设点P的坐标为(t,-t+1),∴S=S△POA=×OA×yP=×1×(-t+1)=-2t+2.即S=-2t+2(0<t<1).②过点P作PQ∥x轴,交BC于点Q.∵点P的坐标为(t,-t+1),∴点Q的坐标为(,-t+1).∵四边形COPQ是平行四边形,∴PQ=OC,即.解得:t=,∴点Q的坐标为(,).本题考查了一次函数的应用,求一次函数表达式,平行四边形的性质,解题的关键是画出图形,借助平行四边形的性质解题.18、(1)45;(2)见解析,EG=4+2;(3)2【解析】
(1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;(2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;(3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.【详解】(1)∵DE=5,AB=3,AD=2,∴AE=AB=3,∴∠AEB=∠ABE=45°,∵四边形ABCD是矩形,∴AD∥CB,∴∠AEB=∠EBF=45°,∠EFB=∠GED,∵EF=EB,∴∠EFB=∠EBF=45°,∴∠GED=45°,故答案为:45;(2)如图1所示.∵四边形ABCD是矩形,∴∠1=∠2=∠3=∠ABF=∠C=90°.∵∠4=60°,EF=EB,∴∠F=∠5=60°.∴∠6=∠G=30°,∴AE=BE.∵AB=3,∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,∵AD=2,∴DE=2+,∴EG=2DE=4+2;(3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,∵四边形EDBF是平行四边形,∴EF=BD,ED=BF,∵EF=BE,∴EB=BD,且AB⊥DE,∴AE=AD=2,∴BF=DE=4,∵EB==,∴EF=,∵EF=BE,EH⊥FC,∴FH=BH=2=BC,∴CH=4,∵EH⊥BC,CD⊥BC,AB⊥BC,∴EH∥CG∥BM,∵H是BF的中点,B是HC的中点,∴E是FM的中点,M是EG的中点,∴EG═2EF=2故答案为:2本题主要考查矩形的性质,平行四边形的性质,勾股定理,等腰三角形的性质,直角三角形的性质定理,添加辅助线,构造等腰三角形和直角三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、3【解析】
先化简,然后根据同类二次根式的概念进行求解即可.【详解】=2,又与最简二次根式是同类二次根式,所以a=3,故答案为3.本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.20、10【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.【详解】作AE⊥BC,因为所以,AE=AB=×4=2.所以,平行四边形的面积=BC×AE=5x2=10.故答案为10本题考核知识点:直角三角形.解题关键点:熟记含有30〬角的直角三角形的性质.21、9【解析】
假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.【详解】设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:化简①得18x+6y+8z=250④化简②得4x+2y+5z=108⑤由④-⑤得14x+4y+3z=142⑥由④×2-⑥×3得-6x+7z=74⑦即z+6(z-x)=74由z≤20得74-6(z-x)≤20解得z-x≥9故第三组销售人员的人数比第一组销售人员的人数多9人.此题考查三元一次方程组的应用,解题关键在于列出方程.22、1【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.23、4米【解析】
过点C作CE⊥AB于点E,则人离墙的距离为CE,在Rt△ACE中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,过点C作CE⊥AB于点E,则人离墙的距离为CE,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A的距离AC=5米时,灯发光.此时,在Rt△ACE中,根据勾股定理可得,CE2=AC2-AE2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.二、解答题(本大题共3个小题,共30分)24、(1)y=20―3x;(2)三种方案,即:方案一:甲种3辆乙种11辆丙种6辆方案二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024合作开发合同
- 幼儿健康领域教育活动
- 2024DLP年保服务含配件合同参考模版
- 2024广告代理合同范本
- 湖北大学知行学院《图案原理》2021-2022学年第一学期期末试卷
- 湖北大学知行学院《金融企业会计》2023-2024学年第一学期期末试卷
- 2024简单店铺商铺租赁合同协议书
- 2024技术引进合同样板版
- 2024查新委托合同书
- 《失真度仪》课件
- 2022年北京城市副中心投资建设集团有限公司校园招聘笔试试题及答案解析
- 小学语文人教六年级上册《月光曲》-课件
- 公诉书格式范文(推荐十八篇)
- 椿林麻辣烫食品安全管理制度
- 老年人能力评定总表(含老年人日常生活活动能力、精神状态与社会参与能力、感知觉与沟通能力、老年综合征罹患情况)
- 《雪落在中国的土地上》课件(57张)
- 旅行社团队确认书
- Python入门基础教程全套课件
- 大学计算机基础实践教程实践心得
- 正大集团标准化养猪及“四良配套”技术介绍课件
- 《语言学纲要》修订版课后练习题
评论
0/150
提交评论