版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆阿克苏地区库车县二中高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.52.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.3.下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac>bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若,则a<b4.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.5.已知向量,则下列结论正确的是()A.B.C.D.6.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.7.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.8.若指数函数(且)与三次函数的图象恰好有两个不同的交点,则实数的取值范围是()A. B.C. D.9.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆10.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.11.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为()A.2 B.3C.4 D.512.若,则下列不等式不能成立是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.14.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.15.已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______16.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为,曲线的参数方程是(是参数)(1)求直线的直角坐标方程及曲线的普通方程;(2)求曲线上的点到直线的距离的最大值18.(12分)设是首项为的等差数列的前项和,是首项为1的等比数列的前项和,为数列的前项和,为数列的前项和,已知.(1)若,求;(2)若,求.19.(12分)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长20.(12分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)21.(12分)已知点是椭圆上的一点,且椭圆的离心率.(1)求椭圆的标准方程;(2)两动点在椭圆上,总满足直线与的斜率互为相反数,求证:直线的斜率为定值.22.(10分)已知抛物线的焦点为,抛物线上的点的横坐标为1,且.(1)求抛物线的方程;(2)过焦点作两条相互垂直的直线(斜率均存在),分别与抛物线交于、和、四点,求四边形面积的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.2、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A3、D【解析】运用不等式性质,结合特殊值法,对选项注逐一判断正误即可.【详解】选项A中,若,时,则成立,否则,若,则,显然错误,故选项A错误;选项B中,若,,则能推出,否则,若,则,显然错误,故选项B错误;选项C中,若,则,显然错误,故选项C错误;选项D中,若,显然,由不等式性质知不等式两边同乘以一个正数,不等式不变号,即.故选:D4、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.5、D【解析】由题可知:,,,故选;D6、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.7、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.8、A【解析】分析可知直线与曲线在上的图象有两个交点,令可得出,令,问题转化为直线与曲线有两个交点,利用导数分析函数的单调性与极值,数形结合可得出实数的取值范围.【详解】当时,,,此时两个函数的图象无交点;当时,由得,可得,令,其中,则直线与曲线有两个交点,,当时,,此时函数单调递增,当时,,此时函数单调递减,则,且当时,,作出直线与曲线如下图所示:由图可知,当时,即当时,指数函数(且)与三次函数的图象恰好有两个不同的交点.故选:A.9、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.10、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B11、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.12、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.14、【解析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:15、##【解析】设,则,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解【详解】解:设,则,甲:由可得,则,乙:由可得:,丙:由可得,即,所以,若,则,则不成立,,则,解得或,所以甲,丙正确,乙错误,此时或,又复数对应的点在复平面第一象限内,所以,故答案为:16、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的直角坐标方程是,曲线的普通方程是(2)【解析】(1)利用极坐标与直角坐标互化的公式进行求解,消去参数求出普通方程;(2)设曲线上任一点以,利用点到直线距离公式和辅助角公式进行求解.【小问1详解】因为,所以,即,将,代入,得直线的直角坐标方程是由得曲线的普通方程是【小问2详解】设曲线上任一点以,则点到直线的距离当时,,故曲线上的点到直线的距离的最大值为18、(1)或(2)【解析】(1)列方程组解得等差数列的公差,即可求得其前项和;(2)列方程组解得等差数列的公差和等比数列的公比,以错位相减法即可求得数列的前项和.【小问1详解】设的公差为,的公比为,则,,因为即,解之得或,又因为,得所以或,故,或【小问2详解】因为,所以,所以由解得(舍去)或,于是得,所以,因为,(1)所以,(2)所以由(1)(2)得:故19、(1)(2)【解析】(1)利用正弦定理化简已知条件,求得,由此求得.(2)利用正弦定理求得,由列方程来求得.【小问1详解】,由正弦定理得,因为,所以,.【小问2详解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,20、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备总量的60%.【解析】(1)根据题意表示出2020年开始,经过年后A等设备量占总设备量的百分比为,求出,根据的范围进行判断;(2)令>即可求解.【小问1详解】记该企业全部生产设备总量为“1”,2020年开始,经过年后A等设备量占总设备量的百分比为,则经过1年即2021年底该企业A等设备量,,可得,又所以数列是以为首项,公比为的等比数列,可得,所以,显然有,所以A等设备量不可能超过生产设备总量的80%.【小问2详解】由,得.因为单调递减,又,,所以在2025年底实现A等设备量超过生产设备总量的60%.21、(1)(2)证明见解析【解析】(1)根据已知条件列方程组,解方程组求得,从而求得椭圆的标准方程.(2)设出直线的方程并与椭圆方程联立,由此求得,同理求得,从而化简求得直线的斜率为定值.【小问1详解】由题可知,解得,从而粚圆方程为.【小问2详解】证明设直线的斜率为,则,,联立直线与椭圆的方程,得,整理得,从而,于是,由题意得直线的斜率为,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地整治项目土地抵押合同范例3篇
- 2024年某物业管理公司与某小区关于物业服务合同
- 房屋租赁合同模板合集五篇
- 七年级第一学期生物教案模板
- 跟岗实习工作总结范文
- 举行春游活动方案
- 配音比赛策划书
- 店长述职报告15篇
- 学生竞选演讲稿怎么写才能吸引人?【5篇】
- 投标承诺书集锦15篇
- 社区居家养老方案
- 2024年英语专业四级考试真题及详细答案
- 输液巡视不及时品管圈课件
- 中班自主游戏总结汇报
- 加油站防偷盗与防灾安全培训
- 玻璃制造企业的管理与技术创新
- 《护理病人隐私保护措施》
- MHT:中小学生心理健康检测(含量表与评分说明)
- 企业战略管理顾问聘用合同
- 贵州壮丽山水文化之旅
- 辽宁省朝阳市朝阳县2023-2024学年九年级上学期期末数学试题
评论
0/150
提交评论