2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题含解析_第1页
2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题含解析_第2页
2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题含解析_第3页
2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题含解析_第4页
2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省安庆市怀宁中学高一上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图像关于直线对称,且对任意,,有,则使得成立的x的取值范围是()A. B.C. D.2.若点、、在同一直线上,则()A. B.C. D.3.已知,现要将两个数交换,使,下面语句正确的是A. B.C. D.4.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则()A.0 B.1C.7 D.85.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.6.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.7.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.28.已知函数,若(其中.),则的最小值为()A. B.C.2 D.49.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流10.函数的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.12.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________13.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)14.满足的集合的个数是______________15.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________16.已知实数满足,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求,;(2)若,求实数的取值范围.18.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断奇偶性,并求在区间上的值域.19.已知二次函数y=ax2+bx﹣a+2(1)若关于x的不等式ax2+bx﹣a+2>0的解集是{x|﹣1<x<3},求实数a,b的值;(2)若b=2,a>0,解关于x的不等式ax2+bx﹣a+2>020.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式21.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解有关抽象函数的不等式考虑函数的单调性,根据已知可得在单调递增,再由与的图象关系结合已知,可得为偶函数,化为自变量关系,求解即可.【详解】设,在增函数,函数的图象是由的图象向右平移2个单位得到,且函数的图像关于直线对称,所以的图象关于轴对称,即为偶函数,等价于,的取值范围是.故选:A.【点睛】本题考查函数的单调性、奇偶性、解不等式问题,注意函数图象间的平移变换,考查逻辑推理能力,属于中档题.2、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.3、D【解析】通过赋值语句,可得,故选D.4、D【解析】根据函数的新定义求解即可.【详解】由题意可知4-(-4)=8.故选:D.5、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:6、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.7、C【解析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C8、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B9、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.10、C【解析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;12、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷13、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)14、4【解析】利用集合的子集个数公式求解即可.【详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.15、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.16、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)利用集合的并、交运算求,即可.(2)讨论、,根据列不等式求的范围.【详解】(1)∵,∴,.(2)当时,,解得,则满足.当时,,解得,又∴,解得,即.综上,.18、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.19、(1)a=﹣1,b=2(2)见解析【解析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax2+bx﹣a+2=0两根,所以,解得a=﹣1,b=2;【小问2详解】当b=2时,不等式ax2+bx﹣a+2>0为ax2+2x﹣a+2>0,即(ax﹣a+2)(x+1)>0,所以,当即时,解集为;当即时,解集为或;当即时,解集为或.20、(1)为上的奇函数;证明见解析(2)答案不唯一,具体见解析【解析】(1)利用函数奇偶性的定义判断即可,(2)由题意可得,得,然后分和解不等式即可【小问1详解】函数为奇函数证明:函数的定义域为,,即对任意恒成立.所以为上的奇函数【小问2详解】由,得,即因为,,且,所以且由,即当,即时,解得当,即时,解得综上,当时,不等式的解集为;当时,不等式的解集为21、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论