版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省怀仁第一中学2025届高二数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.2.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.3.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.4.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.5.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.6.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?7.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.8.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为9.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得10.已知数列满足,,,前项和()A. B.C. D.11.函数的定义域为,,对任意,,则的解集为()A. B.C. D.12.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.14.已知函数,若递增数列满足,则实数的取值范围为__________.15.已知数列是递增等比数列,,则数列的前项和等于.16.已知函数,则函数在上的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值18.(12分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:19.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.20.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积21.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程22.(10分)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D2、C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C3、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.4、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.5、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D6、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.7、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B8、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D9、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.10、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C11、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.12、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).14、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:15、【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.16、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)联立直线方程和双曲线方程,利用弦长公式可求弦长.(2)根据圆过原点可得,设,从而,联立直线方程和双曲线方程后利用韦达定理化简前者可得所求的参数的值.【小问1详解】当时,直线,设,由可得,此时,故.【小问2详解】设,因为以为直径的圆经过坐标原点,故,故,由可得,故且,故.而可化为即,因为,所以,解得,结合其范围可得.18、(1)an=n,bn=(2)证明见解析【解析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组求解即可得答案;(2)求出,利用裂项相消求和法求出前项和为,即可证明【小问1详解】解:设等差数列的公差为d,等比数列的公比为q,q>0,选①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,则an=1+n﹣1=n,bn=;选②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,则an=1+n﹣1=n,bn=;选③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,则an=1+n﹣1=n,bn=;小问2详解】证明:由(1)知,,,所以19、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.20、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积21、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.22、(1)证明见解析(2)【解析】(1)通过作辅助线,构造平行四边形,在平面PAD找到线并证明,根据线面平行的判定定理即可证明;(2)建立空间直角坐标系,求出相应点的坐标,进而求得相关的向量坐标,求出平面EAC与平面PAC的法向量,根据向量的夹角公式求得答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场运营服务 合同范例
- 敏捷开发合同范例
- 临床医学概论(内科)练习题(含参考答案)
- N2级护理人员理论考核考试模拟题+参考答案
- 农村地契合同范例
- 市政ppp项目合同范例
- 物业培训合同范例范例
- 土地流转抵押合同范例
- 乌龟买卖合同范例
- 2025年大理道路货物运输从业资格证考试
- 护士延续注册体检表
- 泌尿科一科一品汇报课件
- 西湖生死学智慧树知到期末考试答案章节答案2024年浙江传媒学院
- 不同地区城镇化的过程和特点(第1课时)高中地理中图版(2019)必修二
- 一年级数学20以内计算练习凑十法、破十法、借十法、平十法
- 中国痔病诊疗指南(2020版)
- 创办精神病医院申请
- 2024征信考试题库(含答案)
- 学生学习概览StudentLearningProfile
- 小班数学《认识1到10的数字》课件
- 手工花项目策划书
评论
0/150
提交评论