版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省株洲市茶陵县茶陵三中高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.2.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.103.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.4.设,“命题”是“命题”的()A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既不充分也不必要条件5.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切6.命题的否定是()A. B.C. D.7.若方程表示双曲线,则此双曲线的虚轴长等于()A. B.C. D.8.已知点到直线:的距离为1,则等于()A. B.C. D.9.设双曲线的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为()A. B.C. D.10.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.11.已知函数只有一个零点,则实数的取值范围是()A B.C. D.12.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________14.某地区有3个疫苗接种定点医院,现有10名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少需要2名至多需要4名志愿者,则不同的安排方法共有___________种.15.已知等差数列的公差不为零,若,,成等比数列,则______.16.已知函数,则函数在上的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,18.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.(12分)已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标20.(12分)共享电动车(sharedev)是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X的分布列与数学期望.21.(12分)某餐馆将推出一种新品特色菜,为更精准确定最终售价,这种菜按以下单价各试吃1天,得到如下数据:(1)求销量关于的线性回归方程;(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每份特色菜的成本是15元,为了获得最大利润,该特色菜的单价应定为多少元?(附:,)22.(10分)已知抛物线的焦点为F,点是抛物线上的点,且.(1)求抛物线方程;(2)直线与抛物线交于、两点,且.求△OPQ面积的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.2、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A3、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.4、A【解析】根据充分、必要条件的概念理解,可得结果.【详解】由,则或所以“”可推出“或”但“或”不能推出“”故命题是命题充分且不必要条件故选:A【点睛】本题主要考查充分、必要条件的概念理解,属基础题.5、D【解析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.6、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C7、B【解析】根据双曲线标准方程直接判断.【详解】方程即为,由方程表示双曲线,可得,所以,,所以虚轴长为,故选:B.8、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.9、C【解析】由已知可求出,即可得出渐近线方程.【详解】因为,所以,所以的渐近线方程为.故选:C.10、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:11、B【解析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、22050【解析】先分组,再排列,注意部分平均分组问题,需要除以平均组数的全排列.【详解】根据题意,这10名志愿者的安排方法共有两类:第一类是2,4,4,第二类是3,3,4.故不同的安排方法共有种.故答案为:2205015、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.16、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨18、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(1)(2)①;②证明见解析,定点的坐标为【解析】(1)由所给条件确定基本量即可.(2)①代入消元,韦达定理整体思想,列出关于的方程从而得解;②由已知可知,得到关于、的一次关系式可得证.【小问1详解】由已知椭圆的右焦点坐标为,,所以,椭圆的方程:【小问2详解】①将与椭圆方程联立得.设,,则,解得,∴,,点到直线的距离为,∴,解得(舍去负值),∴.②设,,将与椭圆方程联立,得,当时,∴,,,若轴上任意一点到直线与的距离均相等,则轴为直线与的夹角的平分线,∴,即,∴.∴,解得.∴.∴直线恒过一定点,该定点的坐标为.20、(1);(2)分布列见解析,数学期望为.【解析】(1)先求出两种颜色的电动车各有多少辆,然后根据超几何分布求概率的方法即可求得答案;(2)先确定X的所有可能取值,进而求出概率并列出分布列,然后根据期望公式求出答案.【小问1详解】因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A为“从中任取3辆共享单车中恰好有一辆是橙色”,则.【小问2详解】随机变量X的所有可能取值为0,1,2,3.所以,,,.所以分布列为0123数学期望.21、(1)(2)24【解析】(1)求出,的值,根据公式求出的值,代入公式即可求出回归直线方程(2)根据(1)的结论,求出利润,根据二次函数的性质,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全与素养教育计划
- 2024年标准商铺权益买卖协议文本2篇
- 5灵活巧妙的剪刀(教学实录)-2024-2025学年六年级上册科学教科版
- 2024年度农村土地承包经营权出租协议3篇
- 2024版出纳员职责担保服务合同样本3篇
- 2025版高考地理第一部分微专题小练习专练62两极地区
- 广东省东莞市黄冈理想学校七年级信息技术下册 第2章 第5节 用电子表格处理问卷数据教学实录 粤教版
- “限塑令”有效吗(教学实录)-2023-2024学年五年级下册综合实践活动沪科黔科版
- 2024年度环保型铁艺护栏工程承包合同3篇
- 2024年秋七年级英语上册 Unit 3 Welcome to our school Study Skills教学实录 (新版)牛津版
- 【教学创新大赛】《数字电子技术》教学创新成果报告
- 咖啡因提取的综合性实验教学
- GONE理论视角下宜华生活财务舞弊案例分析
- 初中语文默写竞赛方案
- 2023电力建设工程监理月报范本
- 汽车空调检测与维修-说课课件
- 氨水浓度密度对照表
- 白雪歌送武判官归京公开课一等奖课件省课获奖课件
- 园林植物栽培与环境
- 小型双级液压举升器设计
- 9月支部委员会会议记录
评论
0/150
提交评论