江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题含解析_第1页
江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题含解析_第2页
江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题含解析_第3页
江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题含解析_第4页
江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省丹阳中学等三校2025届高二数学第一学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支2.已知是椭圆的左焦点,为椭圆上任意一点,点坐标为,则的最大值为()A. B.13C.3 D.53.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数4.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺5.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.56.直线的倾斜角是()A. B.C. D.7.过点作圆的切线,则切线的方程为()A. B.C.或 D.或8.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.59.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=010.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A. B.C. D.11.曲线:在点处的切线方程为A. B.C. D.12.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.14.不大于100的正整数中,被3除余1的所有数的和是___________15.已知函数,设,且函数有3个不同的零点,则实数k的取值范围为___________.16.设Sn是等差数列{an}的前n项和,若数列{an}满足an+Sn=An2+Bn+C且A>0,则+B-C的最小值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.19.(12分)一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比(1)分别求2分钟,3分钟后的水温;(2)记n分钟后的水温为,证明:是等比数列,并求出的通项公式;(3)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:)20.(12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;21.(12分)如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.22.(10分)已知椭圆的上下两个焦点分别为,,过点与y轴垂直的直线交椭圆C于M,N两点,△的面积为,椭圆C的离心率为(1)求椭圆C的标准方程;(2)已知O为坐标原点,直线与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数,使得,求m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A2、B【解析】利用椭圆的定义求解.【详解】如图所示:,故选:B3、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.4、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.5、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C6、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.7、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C8、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.9、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为10、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.11、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A12、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【点睛】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键14、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.15、【解析】由题意画出函数图象,把函数有3个不同的零点的问题转化为函数与函数有3个交点的问题,分为和时分类讨论即可.【详解】作出函数的图象如下图所示,要使函数有3个不同的零点,则函数和函数有三个交点,由已知得函数恒过点,当时,过点时,函数和函数有三个交点,将代入得,即,当时,与相切时,此时函数和函数有两个交点,如图所示,,设此时的切点为,则直线的斜率为,直线的方程为,将点代入得,解得,此时的斜率为,将逆时针旋转至和平行时,即为的位置时,函数和函数有三个交点,此时,故的范围为,综上所述实数k的取值范围为.故答案为:.16、2【解析】因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0对任意正整数n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据,并结合等比数列的定义即可求得答案;(2)结合(1),并通过错位相减法即可求得答案.【小问1详解】当时,,当时,,是以2为首项,2为公比的等比数列,.【小问2详解】,…①…②①-②得,.18、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.19、(1)2分钟的水温为℃,3分钟后的水温℃;(2)证明见解析,,;(3)在水烧开后4到7分钟饮用最佳.【解析】(1)根据给定条件设第n分钟后的水温为,探求出与的关系即可计算作答.(2)利用(1)的信息,列式变形、推导即可得证,进而求出的通项公式.(3)由(2)的结论列不等式,借助对数函数的性质求解即得.【小问1详解】设第n分钟后的水温为,正比例系数为k,记,依题意,,当时,,则有,解得,因此,,即有,,所以2分钟的水温为℃,3分钟后的水温℃.小问2详解】由(1)知,,时,,,则有,即,而,于是得是以为首项,为公比的等比数列,则有,即,所以是等比数列,的通项公式是,.【小问3详解】由(2)及已知得:,即,整理得,两边取常用对数得:,而,解得,即,所以在水烧开后4到7分钟饮用最佳.【点睛】思路点睛:涉及实际意义给出的数列问题,正确理解实际意义,列出关系式,再借助数列思想探求相邻两项间关系即可推理作答.20、(1)证明见详解(2)【解析】(1)将线面平行转化为面面平行,由已知易证;(2)延长相交与点F,利用等体积法求点A到平面PCE,然后由可得.【小问1详解】四边形ABCD为正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小问2详解】延长相交与点F,因为,所以分别为的中点.记点到平面PCF为d,直线AB与平面PCE所成角为,则.易知,,,,因为平面ABCD,所以,所以因为,所以由得:即,得所以22.21、(1)证明见解析;(2).【解析】(1)由三角形的边角关系可证,再由底面,可得.即可证明底面,由面面垂直的判定定理得证.(2)以点为坐标原点,,,分别为,,轴建立空间坐标系,利用空间向量法求出二面角的余弦值.【详解】解析:(1)证明:由,,,,,所以,又,∴,∴,∴,因为底面,底面,∴.因为,底面,底面,底面,底面,所以面面.(2)由(1)可知为与平面所成的角,∴,∴,,由及,可得,,以点为坐标原点,,,分别为,,轴建立空间坐标系,则,,,,设平面的法向量为,则,,取,设平面的法向量为,则,,取,所以,所以二面角余弦值为.【点睛】本题考查面面垂直的判定,线面垂直的性质,利用空间向量法求二面角的余弦值,属于中档题.22、(1);(2)或或.【解析】(1)根据已知条件,求得的方程组,解得,即可求得椭圆的方程;(2)对的取值进行分类讨论,当时,根据三点共线求得,联立直线方程和椭圆方程,利用韦达定理,结合直线交椭圆两点,代值计算即可求得结果.【小问1详解】对椭圆,令,故可得,则,故,则,又,,故可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论