版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市江大桥高级中学2025届高一上数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.42.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.43.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},则A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}4.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.5.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知命题p:∃x∈R,x2+2x<0,则A.∃x∈R,x2+2x≤0 B.∃x∈RC.∀x∈R,x2+2x≥0 D.∀x∈R7.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin8.已知,则()A. B.C. D.9.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=010.若a>b,则下列各式正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个满足,且的函数的解析式__________12.设是R上的奇函数,且当时,,则__________13.在区间上随机地取一个实数,若实数满足的概率为,则________.14.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.15.幂函数y=f(x)的图象过点(2,8),则16.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)对于,不等式恒成立,求实数的取值范围18.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围19.已知,求,的值.20.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)21.某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;(ii)若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力2、B【解析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图3、B【解析】求解一元一次不等式化简,再由交集运算得答案【详解】解:,2,3,,,,2,3,,故选:4、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.5、A【解析】解不等式,再判断不等式解集的包含关系即可.【详解】由得,由得,故“”是“”的充分不必要条件.故选:A.6、C【解析】根据特称命题否定是全称命题即可得解.【详解】把存在改为任意,把结论否定,¬p为∀x∈R,x2故选:C7、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C8、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.9、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解10、A【解析】由不等式的基本性质,逐一检验即可【详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【点睛】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).12、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:13、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.14、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,15、64【解析】由幂函数y=f(x)=xα的图象过点(2,8)【详解】∵幂函数y=f(x)=xα的图象过点∴2α=8∴f(x)=x∴f(4)=故答案为64【点睛】本题考查幂函数概念,考查运算求解能力,是基础题16、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的定义域为,奇函数;(2).【解析】(1)由求定义域,再利用奇偶性的定义判断其奇偶性;(2)将对于,不等式恒成立,利用对数函数的单调性转化为对于,不等式恒成立求解.【小问1详解】解:由函数,得,即,解得或,所以函数的定义域为,关于原点对称,又,所以奇函数;【小问2详解】因为对于,不等式恒成立,所以对于,不等式恒成立,所以对于,不等式恒成立,所以对于,不等式恒成立,令,则在上递增,所以,所以.18、(1)(2)【解析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.19、见解析【解析】分角为第三和第四象限角两种情况讨论,结合同角三角函数的基本关系可得解.【详解】因为,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,从而;如果是第四象限角,那么,.综上所述,当是第三象限角时,,;当是第四象限角时,,.【点睛】本题考查利用同角三角函数的基本关系求值,考查计算能力,属于基础题.20、(1)2;(2).【解析】(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出在单调递减,在单调递增,从而求出在上的最大值和最小值,进而求出实数的取值范围.【小问1详解】易知的对称轴为直线,故在上为减函数,∴在上单调递减,即,,代入解得或(舍去).故实数的值为2.【小问2详解】∵在是减函数,∴.∴在上单调递减,在上单调递增,又函数的对称轴为直线,∴,,又,∴.∵对任意的,总有,∴,即,解得,又,∴,即实数的取值范围为.21、(1);(2)(i)111.95;(ii)0.75.【解析】(1)当时,;当时,,故;(2)(i)直接利用平均值公式求解即可;(ii)根据对立事件的概率公式可得当天的利润不少于元的概率为.试题解析:(1)当时,;当时,.故.(2)(i)这100天中,有5天的日利润为85元,10天的日利润为92元,10天的日利润为99元,5天的日利润为106元,10天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度总经理职位聘请与保密协议合同
- 2025版美容机构美容师专业聘用及培训合同范本3篇
- 课题申报参考:南宋私家本朝史籍修撰及其家国书写研究
- 课题申报参考:民国时期六大疫灾的时空变迁规律、环境机理与社会影响对比研究
- 二零二五年度智慧城市规划设计咨询服务合同2篇
- 二零二五年度内衣品牌授权销售区域保护合同规范
- 2025版模板智慧农业解决方案合同2篇
- 2025年度卫星通信设备销售与维护合同4篇
- 2025年度智能零售店铺门面租赁与系统支持合同
- 2025年度个人买卖房屋贷款合同规范2篇
- 采购支出管理制度
- 儿科护理安全警示教育课件
- 三年级下册口算天天100题
- 国家中英文名称及代码缩写(三位)
- 人员密集场所消防安全培训
- 液晶高压芯片去保护方法
- 使用AVF血液透析患者的护理查房
- 拜太岁科仪文档
- 2021年高考山东卷化学试题(含答案解析)
- 2020新译林版高中英语选择性必修一重点短语归纳小结
- GB/T 19668.7-2022信息技术服务监理第7部分:监理工作量度量要求
评论
0/150
提交评论