版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁中学外国语实验学校2025届高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为()A B.C D.2.函数在处的切线方程为()A. B.C. D.3.椭圆的短轴长为()A.8 B.2C.4 D.4.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.15.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.6.已知数列的通项公式为,且数列是递增数列,则实数的取值范围是()A. B.C. D.7.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m8.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底9.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.10.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.11.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.12.已知空间中四点,,,,则点D到平面ABC的距离为()A. B.C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.4与16的等比中项是________.14.若圆柱的高、底面半径均为1,则其表面积为___________15.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.16.如图,把正方形纸片沿对角线折成直二面角,则折纸后异面直线,所成的角为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.18.(12分)某城市一入城交通路段限速60公里/小时,现对某时段通过该交通路段的n辆小汽车车速进行统计,并绘制成频率分布直方图(如图).若这n辆小汽车中,速度在50~60公里小时之间的车辆有200辆.(1)求n的值;(2)估计这n辆小汽车车速的中位数;(3)根据交通法规定,小车超速在规定时速10%以内(含10%)不罚款,超过时速规定10%以上,需要罚款.试根据频率分布直方图,以频率作为概率的估计值,估计某辆小汽车在该时段通过该路段时被罚款的概率.19.(12分)已知圆台的上下底面半径分别为,母线长为.求:(1)圆台的高;(2)圆台的体积注:圆台体积公式:,其中,S分别为上下底面面积,h为圆台的高20.(12分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.21.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?22.(10分)已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式及前项的和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数求得的单调区间,结合函数值确定正确选项.【详解】由,可得函数的减区间为,增区间为,当时,,可得选项为A故选:A2、C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒3、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.4、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.5、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.6、C【解析】利用递增数列的定义即可.【详解】由,∴,即是小于2n+1的最小值,∴,故选:C7、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.8、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.9、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.10、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A11、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A12、C【解析】根据题意,求得平面的一个法向量,结合距离公式,即可求解.【详解】由题意,空间中四点,,,,可得,设平面的法向量为,则,令,可得,所以,所以点D到平面ABC的距离为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、±8【解析】解析由G2=4×16=64得G=±8.答案±814、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:15、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为16、##30°【解析】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,进而(或其补角)是所求角,算出答案即可.【详解】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,设所求角为,于是.设原正方形ABCD边长为2,取AC的中点O,连接DO,BO,则且,而平面平面,且交于AC,所以平面ABEC,则.易得,,,而则于是,,.在中,,取DE的中点F,则,所以,即,于是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该定点即可.【小问1详解】由圆A:可得(,∴圆心A(-,0),圆的半径r=8,,,可得,,,由椭圆的定义可得:点E的轨迹是以A(,0)、B(,0)为焦点,2a=8的椭圆,即a=4,c=,∴=16-7=9,∴动点E的轨迹方程为;【小问2详解】由(1)知,P(0,3),设,当直线MN的斜率存在时,设直线MN的方程为:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,当m=3时,直线MN的方程为:,此时过点P(0,3)不符合题意,∴k=m+3,∴直线MN的方程为:此时直线MN过点(-1,-3),当直线MN的斜率不存在时,,,解得,此时直线MN的方程为:,过点(-1,-3),综上所述:直线MN过定点(-1,-3).18、(1)(2)(3)【解析】(1)根据已知条件,结合频率与频数的关系,即可求解(2)根据已知条件,结合中位数公式,即可求解(3)在这500辆小车中,有40辆超速,再结合古典概型的概率公式,即可求解【小问1详解】解:由直方图可知,速度在公里小时之间的频率为,所以,解得【小问2详解】解:设这辆小汽车车速的中位数为,则,解得小问3详解】解:由交通法则可知,小车速度在66公里小时以上需要罚款,由直方图可知,小车速度在之间有辆,由统计的有关知识,可以认为车速在公里小时之间的小车有辆,小车速度在之间有辆,故估计某辆小汽车在该时段通过该路段时被罚放的概率为19、(1);(2).【解析】(1)作出圆台的直观图,过点A作,垂足为H,由勾股定理可求圆台的高;(2)结合(1),利用圆台的体积公式可求圆台的体积【详解】(1)作出圆台的直观图,如图,设圆台上下底面圆心分别为,为圆台的一条母线,连接,,过点A作,垂足为H,则的长等于圆台的高,因为圆台的上下底面半径分别为,母线长为所以,,则,可得,故圆台高为;(2)圆的面积圆的面积为故圆台的体积为20、(1)(2)或【解析】(1)结合点到直线的距离公式、弦长公式求得,由此求得圆的方程.(2)根据过的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.【小问1详解】由题意,设圆的标准方程为:,圆关于直线对称,圆与轴相切:…①点到的距离为:,圆被直线截得的弦长为,,结合①有:,,又,,,圆的标准方程为:.【小问2详解】当直线的斜率不存在时,满足题意当直线的斜率存在时,设直线的斜率为,则方程为.又圆C的圆心为,半径,由,解得.所以直线方程为,即即直线的方程为或.21、当圆柱底面半径为,高为时,总成本最底.【解析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Sc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度教育机构数据安全保密合同3篇
- 2024年度水泥砖生产许可证及检测设备采购协议3篇
- 2024年度学校图书馆古籍修复工程合同3篇
- 型煤购销合同范例
- 2024年度圆通快递包裹代收代发服务合同3篇
- 餐饮行业加盟合作合同范例
- 2024年房产过户离婚协议书与婚后财产共有权确认合同3篇
- 2024年度食堂员工福利待遇改善合同2篇
- 地震勘探仪器的微型化与集成化考核试卷
- 外币理财产品的市场开发策略考核试卷
- 学校工程验收报告单
- 线路工程灌注桩施工作业指导书施工方案
- 重力坝的分缝与止水
- 三重管高压旋喷桩施工工艺规程与施工方案
- 云南白药公司近三年财报分析
- 卫浴产品世界各国认证介绍
- 个体诊所药品清单
- 深度学习数学案例(课堂PPT)
- 中国地图含省份信息可编辑矢量图
- 卧式钻床液压系统设计课件
- 水库维修养护工程施工合同协议书范本
评论
0/150
提交评论