版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省潍坊市昌乐县高一数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或2.已知函数,则的值为A. B.C. D.3.下列函数是幂函数的是()A. B.C. D.4.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.5.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.06.幂函数图象经过点,则的值为()A. B.C. D.7.若函数是函数(且)的反函数,且,则()A. B.C. D.8.下列函数中,最小值是的是()A. B.C. D.9.已知函数则=()A. B.9C. D.10.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设集合,,则______12.若命题“是假命题”,则实数的取值范围是___________.13.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________14.已知某扇形的半径为,面积为,那么该扇形的弧长为________.15.已知扇形OAB的面积为,半径为3,则圆心角为_____16.若幂函数的图象过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为第四象限角,且,求下列各式的值(1);(2)18.已知函数(1)若的值域为R,求实数a的取值范围;(2)若,解关于x的不等式.19.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.20.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值21.已知集合,集合,集合.(1)求;(2)若,求实数的值取范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或2、C【解析】由,故选C3、C【解析】由幂函数定义可直接得到结果.【详解】形如的函数为幂函数,则为幂函数.故选:C.4、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D5、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A6、D【解析】设,由点幂函数上求出参数n,即可得函数解析式,进而求.【详解】设,又在图象上,则,可得,所以,则.故选:D7、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.8、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.9、A【解析】根据函数的解析式求解即可.【详解】,所以,故选A10、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】联立方程组,求出交点坐标,即可得到答案【详解】解方程组,得或.故答案为:12、####【解析】等价于,解即得解.【详解】解:因为命题“是假命题”,所以,所以.故答案为:13、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷14、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15、【解析】直接利用扇形的面积公式得到答案.【详解】故答案为:【点睛】本题考查了扇形面积的计算,属于简单题.16、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先根据同角三角函数的关系求解可得,再根据同角三角函数的关系化简即可(2)先根据,再根据求解即可【小问1详解】∵是第四象限角,∴,,又∵,∴,故∴(负值舍去),,∴故【小问2详解】∵,∴18、(1)或.(2)见解析.【解析】(1)当时,的值域为,当时,的值域为,如满足题意则,解之即可;(2)当时,,即恒成立,当时,即,分类讨论解不等式即可.试题解析:(1)当时,的值域为当时,的值域为,的值域为,解得或的取值范围是或.(2)当时,,即恒成立,当时,即(ⅰ)当即时,无解:(ⅱ)当即时,;(ⅲ)当即时①当时,②当时,综上(1)当时,解集为(2)当时,解集(3)当时,解集为(4)当时,解集为19、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得20、(1)8(2)(3)【解析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度食堂生鲜食品采购合作合同一
- 2024年度子女医疗费用分担合同3篇
- 2024年度人工智能教育与培训股权合作转让协议3篇
- 2024年度学校教学软件开发与许可合同3篇
- 2024年度动漫游戏产业三方用工安全责任协议书2篇
- 2024年度建筑施工安全监督及施工合同范本3篇
- 2024年度建筑工程泥工班组施工绿色环保施工合同范本3篇
- 2024年度五保户老年人入院健康管理合同3篇
- 2024年度股权转让合同担保协议3篇
- 吉林体育学院《钢结构课程设计》2023-2024学年第一学期期末试卷
- 2024年武汉大学下半年非事业编制人员招聘(59人)笔试核心备考题库及答案解析
- 盐城工学院《C语言及数据分析》2023-2024学年期末试卷
- 《变电站用交流系统》课件
- 竞聘医疗组长
- 团员发展纪实簿
- 草原牧歌-金杯 课件 2024-2025学年人音版(简谱)(2024)初中音乐七年级上册
- 新疆乌鲁木齐地区2023届高三第一次质量监测化学试题(解析版)
- 2024年新人教版三年级数学上册《第8单元第8课时 分数的初步认识复习》教学课件
- 北京市东城区2023-2024学年高一年级上册期末历史试题
- GB/T 23863-2024博物馆照明设计规范
- 上海市市辖区(2024年-2025年小学四年级语文)部编版期末考试(上学期)试卷及答案
评论
0/150
提交评论