2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题含解析_第1页
2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题含解析_第2页
2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题含解析_第3页
2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题含解析_第4页
2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省齐齐哈尔市龙江二中数学高二上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列的通项公式为,则该数列的第5项为()A. B.C. D.2.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.253.已知向量,,则等于()A. B.C. D.4.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件5.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.6.函数在上的最小值为()A. B.C.-1 D.7.已知F是双曲线C:的一个焦点,点P在C的渐近线上,O是坐标原点,,则的面积为()A.1 B.C. D.8.已知是空间的一个基底,,,,若四点共面.则实数的值为()A. B.C. D.9.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.10.已知点是椭圆方程上的动点,、是直线上的两个动点,且满足,则()A.存在实数使为等腰直角三角形的点仅有一个B.存在实数使为等腰直角三角形的点仅有两个C.存在实数使为等腰直角三角形的点仅有三个D.存在实数使为等腰直角三角形的点有无数个11.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.1212.抛物线的焦点坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则___________.14.过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为­.15.在中,,,,则此三角形的最大边长为___________.16.曲线围成的图形的面积是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.18.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值19.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.20.(12分)如图所示,在四棱锥中,BC//平面PAD,,E是PD的中点(1)求证:CE//平面PAB;(2)若M是线段CE上一动点,则线段AD上是否存在点,使MN//平面PAB?说明理由21.(12分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点22.(10分)在中,内角,,的对边分别为,,.若,且.(1)求角的大小;(2)若的面积为,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接根据通项公式,求;【详解】,故选:C2、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A3、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.4、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.5、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A6、D【解析】求出函数的导函数,根据导数的符号求出函数的单调区间,再根据函数的单调性即可得出答案.【详解】解:因为,所以,当时,,单调递减;当时,,单调递增,故.故选:D.7、B【解析】根据给定条件求出,再利用余弦定理求出即可计算作答.【详解】双曲线C:中,,其渐近线,它与x轴的夹角为,即,在中,,由余弦定理得:,即,整理得:,解得,所以面积为.故选:B8、A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A9、B【解析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.10、B【解析】求出点到直线的距离的取值范围,对点是否为直角顶点进行分类讨论,确定、的等量关系,综合可得出结论.【详解】设点,则点到直线的距离为.因为椭圆与直线均关于原点对称,①若为直角顶点,则.当时,此时,不可能是等腰直角三角形;当时,此时,满足是等腰直角三角形的直角顶点有两个;当时,此时,满足是等腰直角三角形的直角顶点有四个;②若不是直角顶点,则.当时,满足是等腰直角三角形的非直角顶点不存在;当时,满足是等腰直角三角形的非直角顶点有两个;当时,满足是等腰直角三角形非直角顶点有四个.综上所述,当时,满足是等腰直角三角形的点有八个;当时,满足是等腰直角三角形的点有六个;当时,满足是等腰直角三角形的点有四个;当时,满足是等腰直角三角形的点有两个;当时,满足是等腰直角三角形的点不存在.故选:B.11、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.12、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由的导数为,将代入,即可求出结果.【详解】因为,所以,所以.故答案为:.14、【解析】双曲线的右焦点为.不妨设所作直线与双曲线的渐近线平行,其方程为,代入求得点的横坐标为,由,得,解之得,(舍去,因为离心率),故双曲线的离心率为.考点:1.双曲线的几何性质;2.直线方程.15、【解析】可知B对的边最大,再用正弦定理计算即可.【详解】利用正弦定理可知,B对的边最大,因为,,所以,.故答案为:16、【解析】当,时,已知方程是,即.它对应的曲线是第一象限内半圆弧(包括端点),它的圆心为,半径为.同理,当,;,;,时对应的曲线都是半圆弧(如图).它所围成的面积是.故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即18、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时,即时,19、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.20、(1)证明见解析;(2)存在,理由见解析.【解析】(1)为中点,连接,由中位线、线面平行的性质可得四边形为平行四边形,再根据线面平行的判定即可证结论;(2)取中点N,连接,,根据线面、面面平行的性质定理和判断定理即可判断存在性【小问1详解】如下图,若为中点,连接,由E是PD的中点,所以且,又BC//平面PAD,面,且面面,所以,且,所以四边形为平行四边形,故,而面,面,则面.小问2详解】取中点N,连接,,∵E,N分别为,的中点,∴,∵平面,平面,∴平面,线段存在点N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的动点,平面,∴平面PAB,∴线段存在点N,使得MN∥平面21、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立;当直线的斜率存在时,设直线的方程,联立方程组求得和,得到,结合抛物线的定义和方程求得,,结合,即可求解.【小问1详解】解:设点,(其中),由圆,可得圆心坐标为,因为在圆外,所以到圆上的点的最小距离为,又由到圆上的点的最小距离等于它到轴的距离,可得,即,整理得,即曲线的方程为【小问2详解】解:当直线的斜率不存在时,可得点为抛物线的交点,点为坐标原点,点为抛物线的准线与轴的交点,显然满足是的中点;当直线的斜率存在时,设直线的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论