专项36锐角三角函数实际应用-母子型_第1页
专项36锐角三角函数实际应用-母子型_第2页
专项36锐角三角函数实际应用-母子型_第3页
专项36锐角三角函数实际应用-母子型_第4页
专项36锐角三角函数实际应用-母子型_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专项36锐角三角函数实际应用母子型通过在三角形外作高BC,构造出两个直角三角形求解,其中公共边BC是解题的关键.在Rt△ABC和Rt△DBC中,BC为公共边,AD+DC=AC.图形演变及对应的数量关系如下:特别提醒:”母子“型的关键是找到两个直角三角形外的公共高1.(2021春•丽水月考)如图,小梦要测量学校旗杆的高度BD,在点A处测得∠BAD=45°,在点C处测得∠BCD=60°.已知AC=8米,点A、C、D在同一直线上,则旗杆的高度BD为()A.(4+4)米 B.(7+7)米 C.(14+14)米 D.(4+12)米【答案】D【解答】解:在Rt△ABD中,∵∠BAD=45°,∴∠ABD=∠BAD=45°.∴BD=AD.在Rt△CBD中,∵tan∠BCD==tan60°.∴CD===BD.∵AC=AD﹣CD,∴BD﹣BD=8.∴BD===12+4.故选:D.2.(2021秋•城阳区校级期中)如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2 D.6【答案】A【解答】解:设CD=x米,BD=y米,在Rt△BCD中,BD2=BC2﹣CD2,即y2=42﹣x2,在Rt△BAD中,BD2=AB2﹣AD2,即y2=(4)2﹣(x+4)2,∴42﹣x2=(4)2﹣(x+4)2,解得:x=2,即CD=2米,故选:A.3.(2021春•怀化期中)如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了28米,到达D处,测得∠ADB=30°,则树的高度是.【答案】14米【解答】解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=28(米),又∵∠ABD=90°,∴AB=AD=14(米),∴树的高度为14米.故答案为:14米.4.(2022•武昌区模拟)如图,某河段的两岸平行,小明在一侧河岸的A点观测对岸C点,测得∠CAD=45°,小刚在距离A点80米的B点测得∠CBD=30°,根据这些数据可以算出河宽为米(≈1.414,≈1.732,精确到个位).【答案】109【解答】解:过点C作CE⊥DB,垂足为E,设CE=x米,在Rt△CEA中,∠CAE=45°,∴AE===x(米),∵AB=80米,∴BE=AE+AB=(x+80)米,在Rt△BEC中,∠CBE=30°,∴tan30°===,∴x≈109,经检验:x≈109是原方程的根,∴河宽约为109米,故答案为:109.5.(2022•深圳三模)某学校安装红外线体温检测仪(如图1),其红外线探测点O可以在垂直于地面的支杆OP上自由调节(如图2).已知最大探测角∠OBC=67°,最小探测角∠OAC=37°.测温区域AB的长度为2米,则该设备的安装高度OC应调整为()米.(精确到0.1米.参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)A.2.4 B.2.2 C.3.0 D.2.7【答案】B【解答】解:设BC=xm,∵AB=2m,∴AC=(x+2)m,∵∠OBC=67°,∠OAC=37°∴tan∠OBC=tan67°≈,tan∠OAC=tan37°≈,∵OC=BC•tan∠OBC=BC•tan67°≈x,OC=AC•tan∠OAC=AC•tan37°≈(x+2),∴x=(x+2),解得:x=,∴OC≈x=≈2.2m,故选:B.6.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为()(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)A.28m B.34m C.37m D.46m【答案】C【解答】解:由题意可知:AB⊥BC,在Rt△ADB中,∠B=90°,∠ADB=58°,∵tan∠ADB=tan58°=,∴BD=≈(m),在Rt△ACB中,∠B=90°,∠C=22°,∵CD=70m,∴BC=CD+BD=(70+)m,∴AB=BC×tanC≈(70+)×0.40(m),解得:AB≈37m,答:该建筑物AB的高度约为37m.故选:C.7.(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为()A. B. C. D.【答案】D【解答】解:设AB=x,在Rt△ABD中,tanβ=,∴BD=,∴BC=BD+CD=a+,在Rt△ABC中,tanα=,解得x=.故选:D.8.(2022春•茅箭区校级月考)某人为了测量塔DE的高度,他在山下与山脚B在同一水平面的A处测得塔尖点D的仰角为45°,再沿AC方向前进30米到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,那么塔DE的高度是()A.(15+5)m B.(15﹣5)m C.(30+10)m D.(30﹣10)m【答案】C【解答】解:设BC=x米,在Rt△BDC中,∠DBC=60°,∴DC=BC•tan60°=x(米),∵AB=30米,∴AC=AB+BC=(30+x)米,在Rt△ADC中,∠A=45°,∴tanA===1,∴x=15+15,经检验:x=15+15是原方程的根,∴BC=(15+15)米,DC=x=(45+15)米,在Rt△EBC中,∠EBC=30°,∴EC=BC•tan30°=(15+15)×=(15+5)米,∴DE=DC﹣CE=(30+10)米,故选:C.9.(2022•吴中区模拟)同学甲为了测量教学楼ABCD的高度CD,在水平地面点F处,观察点D的仰角为32°,再向点C处前行了15米到达点E,即EF=15米,在点E处看点D的仰角为64°,则教学楼的高CD用三角函数表示为()A.15sin32° B.15tan64° C.15sin64° D.15tan32°【答案】C【解答】解:∵∠CED=64°,∠F=32°,∠CED=∠F+∠EDF,∴∠EDF=∠CED﹣∠F=64°﹣32°=32°,∴∠EDF=∠F,∴DE=EF,∵EF=15米,∴DE=15米,在Rt△CDE中,sin∠CED=,∴CD=DEsin∠CED=15sin64°,故选:C.10.(2022•武汉模拟)如图,因疫情防控工作的需要,在学校大门上方安装了一个人体体外测温摄像头,学校大门高ME=7.5米,学生身高BD=1.5米,当学生准备进入识别区域时,在点B处测得摄像头M的仰角为30°,当学生刚好离开识别区域时,在点A处测得摄像头M的仰角为60°,则体温监测有效识别区域AB的长是米(≈1.73,结果精确到0.1米).【答案】6.9【解答】解:由题意得EF=BD=1.5米,∵ME=7.5米,∴FM=6米,在Rt△CFM中,∠FCM=60°,tan60°=,解得CF=2,在Rt△DFM中,∠MDF=30°,tan30°=,解得DF=6,∴CD=DF﹣CF=6﹣2≈6.9(米),∴AB=CD=6.9米.故答案为:6.911.(2022•西青区一模)某中学九年级数学兴趣小组想测量建筑物AB的高度,他们在C处仰望建筑物顶端A测得仰角为37°.再往建筑物的方向前进9m到达D处,测得建筑物顶端A的仰角为63°,求建筑物AB的高度(测角器的高度忽略不计,结果精确到1m).参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.8.sin63°≈0.9,cos63°≈0.5,tan63°≈2.0.【解答】解:设BD=xm,AB=ym,在Rt△ADB中,tan63°=≈2,∴y≈2x,在Rt△ACB中,tan37°=≈0.8,即≈0.8,∴y≈0.8(9+x),∴解得:,∴AB的高度约为12m,答:建筑物AB的高度约为12m.12.(2022•朝阳)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:≈1.7)【解答】解:延长DF交AB于点G,由题意得:DF=CE=8m,DC=EF=BG=1.2m,∠AGF=90°,设AG=xm,在Rt△AFG中,∠AFG=45°,∴FG==x(m),∴DG=DF+FG=(x+8)m,在Rt△ADG中,∠ADG=30°,∴tan30°===,∴x=4+4,经检验:x=4+4是原方程的根,∴AB=AG+BG≈12(m),∴旗杆顶端A到地面的距离即AB的长度约为12m.13.(2022春•长沙期中)长沙为打造宜游环境,对某旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,步行道BD的坡度为1:,在D处测得山顶A的仰角为45°.(1)求∠DBC的大小;(2)求电动扶梯DA的长(结果保留根号).【解答】解:(1)如图,作DE⊥BC于E,DF⊥AC于F,∵步行道BD的坡度为1:,∴tan∠DBC===,∴∠DBC=30°;(2)∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DE=BD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴AD=AF=70(米),答:电动扶梯DA的长为70米.14.(2022•平定县模拟)2022年2月20日,举世瞩目的北京冬奥会圆满落下帷幕.北京冬奥会为绿色办奥、科技办奥贡献了中国样本和中国智慧,让奥运精神点亮更多人的冰雪梦想,并以冰雪运动和奥林匹克精神为纽带,凝聚更团结的力量.图1,图2分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED与斜坡AB垂直,大腿EF与斜坡AB平行,G为头部,假设G,E,D三点共线,若大腿弯曲处与滑雪板后端的距离EM长为0.9m,该运动员大腿EF长为0.4m,且其上半身GF长为0.8m,∠EMD=35°.(1)求此刻滑雪运动员的身体与大腿所成的夹角∠GFE的度数;(2)求此刻运动员头部G到斜坡AB的高度.(结果精确到0.1m,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,)【解答】解:(1)连接GE,∵EF∥AB,ED⊥AB,G,E,D三点共线,∴∠GEF=∠EDM=90°,∵EF=0.4m,GF=0.8m,∴cos∠GFE==,∴∠GFE=60°;(2)由(1)得∠GFE=60°,在Rt△GFE中,GE=GF•sin∠GFE=×=≈0.69(m),在Rt△EDM中,∠EMD=35°,EM=0.9m,∴ED=EM•sin∠EMD=0.9×sin35°≈0.51(m),∴GD=GE+ED≈0.69+0.51=1.2(m),答:此刻运动员头部G到斜坡AB的高度约为1.2m.15.(2022•河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.5,经检验:x≈30.5是原方程的根,∴DC=DH+CH=30.5+1.5≈32(米),∴拂云阁DC的高度约为32米.16.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°,测角仪的高度为1.6m.(Ⅰ)求观星台最高点A距离地面的高度(结果精确到0.1m);(Ⅱ)“景点简介”显示,观星台的高度为12.6m,请计算本次测量结果的误差.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41.【解答】解:(1)过点A作AE⊥MP,交MP的延长线于点E,连接BC并延长,交AE于点D.则CD⊥AE,BM=CN=DE=1.6m,BC=MN=16m,∠ABC=22°,∠ACD=45°,设AD=xm,则CD=xm,BD=(16+x)m,在Rt△ABD中,tan22°=≈0.40,∴x≈10.7m,∴AE=AD+DE=10.7+1.6=12.3(m).即观星台最高点A距离地面的高度约为12.3m.(2)12.6﹣12.3=0.3(m).∴本次测量结果的误差为0.3m.17.如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.【解答】解:(1)在Rt△ABD中,∠ABD=45°,∴AD=AB=4(m),在Rt△ACD中,∠ACD=30°,∴AC=2AD=8(m),答:新传送带AC的长度为8m;(2)在Rt△ACD中,∠ACD=30°,∴CD=AC•cos∠ACD=4(m),在Rt△ABD中,∠ABD=45°,∴BD=AD=4(m),∴BC=CD﹣BD=(4﹣4)m,∴PC=BP﹣BC=4﹣(4﹣4)=4(m),∵4<5,∴货物MNQP需要挪走.18.如图,学校一幢教学楼AB的顶部竖有一块写有校训的宣传牌AC,小同在M点用测倾器测得宣传牌的底部A点的仰角为31°,他向教学楼前进7米到达N点,测得宣传牌顶部C点的仰角为45°,已知广告牌AC的高度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论