数据与模型安全 课件 第13周:AI公平性与伦理_第1页
数据与模型安全 课件 第13周:AI公平性与伦理_第2页
数据与模型安全 课件 第13周:AI公平性与伦理_第3页
数据与模型安全 课件 第13周:AI公平性与伦理_第4页
数据与模型安全 课件 第13周:AI公平性与伦理_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

姜育刚,马兴军,吴祖煊AI

Fairness

and

Ethics/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

Recap:

week

12Model

Extraction:

AttacksModel

Extraction:

DefensesThisWeekBiasesinCurrentAIModelsMachineLearningBiasAIEthics,TechnologyEthicsEthicsinITWorkplaceBiases

in

Current

AI

Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

A

study

conducted

by

ACLU

(AmericanCivilLibertiesUnion,美国公民自由联盟)Object:

Amazon

facialrecognition

softwareRekognitionMethodology:

the

tool

matches

28Congress

members

with

mugshotsMugshot

database:

25,000

publiclyavailablearrestphotos

The

test

costs

only

$12.33—lessthanalargepizzaBiases

in

Current

AI

Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

20%

of

the

members

are

people

of

color39%

of

the

matched

criminals

are

people

of

colorBiases

in

Current

AI

Models/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

A

machine

learning

based

resume

filtering

toolIt

takes

100

resumes

and

returns

the

top-5It

was

then

found

to

recommend

only

men

for

certain

jobsBiases

in

Current

AI

Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070COMPAS(CorrectionalOffenderManagementProfilingforAlternativeSanctions)algorithm

used

by

US

court

systemsA

fairness

study

conducted

by

ProPublica

(aPulitzerPrize-winningnon-profitnews

organization)The

prob

of

reoffend:

black

offenders

(45%)

vs

white

offenders

(23%)/article/machine-bias-risk-assessments-in-criminal-sentencing

Biases

in

Current

AI

Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070

PredPol

(predictivepolicing)

algorithm

biased

against

minorities.It

predicts

wherecrimeswilloccurinthefuture,

designed

to

reduce

human

bias.It

isalreadyusedbytheUSApoliceinCalifornia,Florida,Maryland,etc.It

repeatedlysends

police

patrol

to

regions

that

contains

a

largenumberofracialminorities.Photoby

M.SpencerGreen/APBiases

in

Current

AI

Models/article/racial-bias-found-in-a-major-health-care-risk-algorithm/

Healthcarerisk-predictionalgorithm

used

for

200

million

people

in

US

hospitals

predicts

who

needs

extra

health

care.The

algorithm

heavilyfavourswhitepatientsoverblackpatients,

although

race

is

not

a

variable

for

prediction.It

was

actually

caused

by

a

cost

variable

(black

patients

incurredlowerhealth-carecosts).Photoby

DaanStevens

on

UnsplashBiases

in

Current

AI

Models/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education

眼睛太小被辅助驾驶系统识别为“开车睡觉”Biases

in

Medical

ModelsGenderimbalanceinmedicalimagingdatasetsproducesbiasedclassifiersforcomputer-aideddiagnosis,

PANS,

2020Imbalanced

training

data

leads

to

biased

performanceTraining

on

male

dataTraining

on

female

dataBiases

in

Medical

ModelsSeyyed-Kalantari,Laleh,etal."Underdiagnosisbiasofartificialintelligencealgorithmsappliedtochestradiographsinunder-servedpatientpopulations."

Naturemedicine

27.12(2021):2176-2182.Under-diagnoses

for

under-represented

subpopulationsBiases

in

Medical

ModelsAdleberg,Jason,etal."Predictingpatientdemographicsfromchestradiographswithdeeplearning."

JournaloftheAmericanCollegeofRadiology

19.10(2022):1151-1161.AI

model

can

detect

race

from

x-Rays!/story/these-algorithms-look-x-rays-detect-your-race/Biases

in

LLMs:

how

to

test

it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,

FAccT,

2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By

Amazon,

2021For

fairness

evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5

fairnessdomains:profession,gender,race,religious

ideologies,andpolitical

ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases

in

LLMs:

how

to

test

it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,

FAccT,

2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By

Amazon,

2021For

fairness

evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5

fairnessdomains:profession,gender,race,religious

ideologies,andpolitical

ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases

in

LLMs:

how

to

test

it?BiasBenchmarkforQA(BBQ)BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,

ACL,

2022By

New

York

University,

2022A

question

set

for

testing

social

bias:9

biascategoriesEachcategoryhas

>25templatesWrittenbytheauthorsandvalidatedusingcrowdworkerjudgments.Overall

>58kexamples.Biases

in

LLMs:

how

to

test

it?BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,

ACL,

2022MetricsDo-Not-Answer:ADatasetforEvaluatingSafeguardsinLLMs,

arXiv:2308.13387Biases

in

LLMS:

Do-Not-AnswerDo-Not-Answer:By

LibrAI,MBZUAI,TheUniversityofMelbourneADatasetforEvaluatingSafeguardsinLLMsA3-levelrisktaxonomyforLLMsDo-Not-AnswerInformationHazards:TheserisksarisefromtheLLMpredictingutterancesthatconstituteprivateorsafety-criticalinformationthatispresentin,orcanbeinferredfrom,thetrainingdata.MaliciousUses:TheserisksarisefromusersintentionallyexploitingtheLLMtocauseharm.Discrimination,ExclusionandToxicity:TheserisksarisefromtheLLMaccuratelyreflectingnaturalspeech,includingunjust,toxic,andoppressivetendenciespresentinthetrainingdata.MisinformationHarms:TheserisksarisefromtheLLMassigninghighprobabilitytofalse,misleading,nonsensical,orpoorqualityinformation.Human-ComputerInteractionHarms:TheserisksarisefromLLMapplicationssuchasconversationalagents,thatdirectlyengageauserviathemodeofconversation.Do-Not-AnswerActionCategories.(0)cannotassist;(1)refutetheopinion;(2)discussfromdualperspectives;(3)perceivetheriskandanswercautiouslywithasuitabledisclaimer;(4)cannotofferaccurateorconcreteanswersduetolackoflanguagemodelabilityoruncertainty;(5)followandrespondtotheinstruction.harmlessharmfulDo-Not-AnswerHumanEvaluationAutomaticResponseEvaluationGPT-4PLM-basedClassifierDefinition

of

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35./sociocultural-factors/implicit-biasFairness:

the

absenceofanyprejudiceorfavouritismtowardan

individualorgroupbasedon

theirinherentoracquired

characteristics.(无差别化决断)Bias:

decisionsare

skewedtowardaparticulargroupofpeople

not

based

on

their

inherent

characteristics.(差别化决断)Biasconsistsofattitudes,behaviors,andactionsthatareprejudicedinfavoroforagainstonepersonorgroupcomparedtoanother.(社会学)Cognitive

Biases:

Psychology

and

Sociology/wiki/Cognitive_bias/wikipedia/commons/6/65/Cognitive_bias_codex_en.svg

Types

of

Machine

Learning

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.ModelData

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Measurement

Bias-

COMPAS使用被捕次数和家庭成员被捕次数作为风险预测属性Omitted

Variable

Bias-竞争对手(忽略的因素)的出现导致大量用户退订Representation

Bias-数据集的分布不具有全局代表性:比如ImageNet的地域分布Aggregation

BiasSimpson’s

Paradox:在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论Modifiable

Areal

Unit

Problem(MAUP):分析结果随基本面积单元(栅格细胞或粒度)定义的不同而变化的问题Sampling

Bias:跟representation

bias类似,源自非随机采样Longitudinal

Data

Fallacy(纵向数据错误):未考虑时间因素Linking

Bias:社交网络图里面用户交互规律和连接关系有很大不同Algorithmic

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Algorithmic

Bias-优化、正则化方法,统计分析方法,对数据的有偏使用Recommendation

Bias-呈现方式和排行顺序存在偏见Popularity

Bias-越流行的物体得到的推荐越多,进而获得更多的点击Emergent

Bias:-软件完成设计后用户群体已经变了Evaluation

Bias:-使用不恰当的基准数据集去衡量模型User

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Historical

Bias-历史数据存在偏见,比如搜索“女CEO”会根据历史数据返回很少的女性Population

Bias-平台用户群体不同,比如女生喜欢用Pinterest,Facebook,Instagram,而男生喜欢用RedditorTwitterSelf-Selection

Bias-采样偏见的一种,比如对于意见调查Social

Bias:别人的行为影响我们的决定(别人都给高分,你给不给?)Behavioral

Bias:不同圈子/平台上的人的行为不同,比如emoji表情的使用习惯Temporal

Bias:人群和行为都会随时间而变化,比如twitter上有时候会用hashtag有时又不用Content

Production

Bias:每个人创造内容的方式和习惯不同,比如不同群体的文字使用习惯不同Existing

Bias

DatasetsDataset

NameSizeType

AreaUCIadultdataset48,842incomerecordsSocialGermancreditdataset1,000credit

recordsFinancialPilotparliamentsbenchmarkdataset1,270imagesFacial

ImagesWinoBias3,160sentencesCoreference

resolutionCommunitiesandcrimedataset1,994crimerecordsSocialCOMPASDataset18,610crimerecordsSocialRecidivisminjuvenilejusticedataset4,753crimerecordsSocialDiversityinfacesdataset1

millionimagesFacial

ImagesCelebA162,770imagesFacial

Images公平性定义Mehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Def.

1:

Equalized

Odds同等机会对,同等机会错Def.

2:

Equal

Opportunity同等机会对Def.

3:

Demographic

Parity个体存在与否不影响对Def.

4:

Fairness

Through

Awareness输入相近,结果相同Def.

5:

Fairness

Through

Unawareness决策不适用偏见属性Def.

6:

TreatmentEquality错误的数量一直Fair

Machine

Learning:

Dataset

DescriptionShow

dataset

statistics

and

creation

detailssourcesDataset

and

creation

detailsdatasetGebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.Fair

Machine

Learning:

Dataset

LabelsUse

dataset

specifications

(数据集说明书)Gebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.Fair

Machine

Learning:

Dataset

LabelsSimpson’sparadox

testing

(合在一起结论变了)Gebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.StackExchange:第几个回答更容易被接受为最佳答案?(b):基于session

length划分groupFair

Machine

Learning:

CausalityIdentify

and

remove

biases

with

causal

graphsZhang,Lu,YongkaiWu,andXintaoWu."Achievingnon-discriminationindatarelease."

SIGKDD,2017.性别专业生源地分数录取?Fair

Machine

Learning:

Sampling/Re-samplingBalancing

the

minorities

v

majorities

by

re-sampling/code/rafjaa/resampling-strategies-for-imbalanced-datasets/notebookFair

Machine

Learning:

Fair

RepresentationsLouizos,Christos,etal."Thevariationalfairautoencoder."

arXivpreprintarXiv:1511.00830

(2015).Fair

AutoEncoder原始数据MMD

wo

ss

wo

MMDs

+

MMDBlue:

male;

Red:

femaleFair

Machine

Learning:

debiasingAmini,Alexander,etal."Uncoveringandmitigatingalgorithmicbiasthroughlearnedlatentstructure."

AAAI.2019.DebiasingVariationalAutoencoder

(DB-VAE)Fair

Machine

Learning:

UnbiasedLearningNam,Junhyun,etal."Learningfromfailure:De-biasingclassifierfrombiasedclassifier."NeurIPS,2020.De-biasingclassifierfrombiasedclassifierFair

Machine

Learning:

UnbiasedLearningHong,Youngkyu,andEunhoYang."Unbiasedclassificationthroughbias-contrastiveandbias-balancedlearning."NeurIPS,2021.Unbiased

classification

with

bias

capturing

modelFair

Machine

Learning:

ReweightingFORML:LearningtoReweightDataforFairness/research/learning-to-reweight-dataRemaining

ChallengesBias

mining:

how

to

automatically

identify

biases

for

a

given

dataset

and

modelA

general

definition

of

bias/fairness:

a

ML

and

societal

definition

of

biasFrom

equality

to

equity:从平等到公平Efficient

fair

learning:

fine-tuning

basedIn-situ

debiasing:

identify

and

fix

bias

on-siteAI

Ethics伦理规范、职业道德Ethics,moralsandrights-definitionsEthics–thestudyofthegeneralnatureofmoralsandofthespecificmoralchoicestobemadebytheindividualinhis/herrelationshipwithothers.TherulesorstandardsgoverningtheconductofthemembersofaprofessionMorals–concernedwiththejudgementprinciplesofrightandwronginrelationtohumanactionandcharacter.Teachingorexhibitinggoodnessorcorrectnessofcharacterandbehaviour.Rights–conformingwithorconformabletojustice,lawormorality,inaccordancewithfact,reasonortruth.Who

teaches

us

what

is

ethical?Teacher?Lawyer?Doctor?Government?Parents?Today’s

ethics

principles

are

built

upon

the

progress

of

human

civilization.Ethics,

technology

and

the

future

humanity?AI

EthicsLaws

and

ethics

are

falling

far

behind

modern

technologies.

/watch?v=bZn0IfOb61U

UnfortunatelyUnfortunatelyGoogle

said

“don‘t

be

evil”But

they

regret!Privacy

or

Security?Privacy

or

Security?CSAM

(ChildSexualAbuseMaterial)/2021/09/03/business/apple-child-safety.htmlTechnologyisprogressingat“warp

speed”whileourethics,socialactsandlawsremainlinearTechnologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Technologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Robots

Will

Walk

Among

UsWorld

Future

Society三原则:

Humansshouldnotbecometechnology.(人不要成为技术本身)HumansshouldnotbesubjecttodominantcontrolbyAI/AGIentities.(人不应被任何AI控制)Humansshouldnotfabricatenewcreaturesbyaugmentinghumansoranimals.(人不造“人”)Ethics

in

IT

workplace在人工智能相关工作中,我们可能会遇到一些难以抉择的伦理问题除了技术本身的伦理问题,还有工作伦理:Whatisanethicaldilemma(伦理困境)?Threeconditionsmustbepresentforasituationtobeconsideredanethicaldilemma:Anindividual,the“agent”,mustmakeadecisionaboutwhichcourseofactionisbest.Situationsthatareuncomfortablebutdon’trequireachoice,arenotethicaldilemmas;Theremustbedifferentcoursesofactiontochoosefrom;Nomatterwhatcourseofactionistaken,someethicalprincipleiscompromised,i.e.thereisnoperfectsolution.Allen,K.(2012).Whatisanthicaldilemma?TheNewSocialWorker.availableat/feature-articles/ethics-articles/What_Is_an_Ethical_Dilemma%3F/Whatisanethicaldilemma?Imagefrom:/memes/the-trolley-problem

TheTrolleyproblem

(电车难题)Case

studiesData

access(数据获取相关)Confidentiality(保密相关)Safety(安全相关)Trust(信任相关)Intellectual

Property(知识产权相关)Privacy(隐私相关)DataAccessYouareworkingforaFinancialservicesindustrycompanydoingauditing/financialtransactionmanagementYougetadatabaseofacompany’sfinancesshowingitsinbigtroubleandabouttogobust,losingallitsshareholdersmoneyYourealizeyourelderlyparentshaveinvestedalltheirlifesavingsinthiscompanyandwillgobrokewhenthishappensWhatdoyoudo???ConfidentialityYouworkforamedicaldiagnosticdevicecompanyYouseeinformationaboutrealpatientsandtheirtestsYourecognizethenameofyoursibling’spartnerTheyhaveaveryseriouscommunicablediseaseyouthinkyoursiblinghasn’tbeentoldaboutWhatwouldyoudo???SafetyYouareworkingforacompanydevelopingself-drivingcarsYouhavetodecidewhattodointhecriticalscenarioofthecareither(i)hitanothercaror(ii)hitapedestrianWhatdoyouprogramthecar’sAItodo?Whatcould/shouldhappeninsuchascenario?Whatdohumandriversdonow?Whosefaultwillitbeifsuchanaccidentoccurs(themanufacturerofthecar?Theprogrammers?Thepersoninthecar?Theothercar?Thepedestriane.g.ifwalkingonthefreeway?)BillingyourITwork–thetruthornot?YouworkforanITconsultingcompanyThecompanyhasmanybigclientsyouworkforbythehourEachprojectyouworkonyourecordand“bill”hoursworkedtoeachclientYouremployercollectsthehoursworkedperstaffmemberperclientupeachweekandbillseachclientYouarepaidaportionofthisamountbilledYourcompanyisstrugglingfinanciallyYourmanagerasksyoutoaddafewextrahourstoeachprojectyouworkonforyourweeklybillingsWhatdoyoudo???IntellectualPropertyYouareworkingforacompanydevelopingnewmobilephoneappsThecompanyhasanumberofclientsYouandtwofriendsdecidethatyoucoulddoamuchbetterjoboftheapplicationsworkingforyourselvesinanewcompanyYoucopythemostinterestingbitsofthedesignsandcodetoanoff-siteserverYoucopythecustomerdatabaseYoustartyournewcompany,developnewapps,andapproachtheclientstosellitWhatdoyouthinkwillhappen?Why?YouroldbosssuesyouandyournewcompanyforextensivedamagesandrestraintoftradePrivacyYouworkforacompanybuildingcomputergamesusingtechnologiessuchasKinect,phones,VirtualRealityandAugmentedReality.Thecompanycapturesinformationaboutgamerse.g.demographics,playingtimes,whatgamestheyareplaying,backgroundconversations,etc.Motivationwastobettertargetnewgames,gameextensions,real-timein-gamepurchasestogameclientsetc.Customershavetoagreetothisdatacaptureusagewhentheybuythegame.Companythenfindsaveryprofitableextensionofsellingsomeofthedatatoothercompaniesfortargetedadvertisingtothegamers.YouareaskedtowritethesoftwaretosharethegamerdatawiththeseotherthirdpartycompanysystemsShouldyou/youremployerbedoingthis?Whowillgetprosecutedforbreachofprivacyanddatalaws??Mobiledevices–monitoring,datausageconsentYoumanageanITteamthatspendsalotofitstimevisitingclientofficesaroundthecity/state.Youwantanappallowingteammemberstoactivelyandeasilylogtheirhours,work,issues,etc.Youareconcernedaboutteammemberssafetyandsec

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论