版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
姜育刚,马兴军,吴祖煊AI
Fairness
and
Ethics/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
Recap:
week
12Model
Extraction:
AttacksModel
Extraction:
DefensesThisWeekBiasesinCurrentAIModelsMachineLearningBiasAIEthics,TechnologyEthicsEthicsinITWorkplaceBiases
in
Current
AI
Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
A
study
conducted
by
ACLU
(AmericanCivilLibertiesUnion,美国公民自由联盟)Object:
Amazon
facialrecognition
softwareRekognitionMethodology:
the
tool
matches
28Congress
members
with
mugshotsMugshot
database:
25,000
publiclyavailablearrestphotos
The
test
costs
only
$12.33—lessthanalargepizzaBiases
in
Current
AI
Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
20%
of
the
members
are
people
of
color39%
of
the
matched
criminals
are
people
of
colorBiases
in
Current
AI
Models/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
A
machine
learning
based
resume
filtering
toolIt
takes
100
resumes
and
returns
the
top-5It
was
then
found
to
recommend
only
men
for
certain
jobsBiases
in
Current
AI
Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070COMPAS(CorrectionalOffenderManagementProfilingforAlternativeSanctions)algorithm
used
by
US
court
systemsA
fairness
study
conducted
by
ProPublica
(aPulitzerPrize-winningnon-profitnews
organization)The
prob
of
reoffend:
black
offenders
(45%)
vs
white
offenders
(23%)/article/machine-bias-risk-assessments-in-criminal-sentencing
Biases
in
Current
AI
Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070
PredPol
(predictivepolicing)
algorithm
biased
against
minorities.It
predicts
wherecrimeswilloccurinthefuture,
designed
to
reduce
human
bias.It
isalreadyusedbytheUSApoliceinCalifornia,Florida,Maryland,etc.It
repeatedlysends
police
patrol
to
regions
that
contains
a
largenumberofracialminorities.Photoby
M.SpencerGreen/APBiases
in
Current
AI
Models/article/racial-bias-found-in-a-major-health-care-risk-algorithm/
Healthcarerisk-predictionalgorithm
used
for
200
million
people
in
US
hospitals
predicts
who
needs
extra
health
care.The
algorithm
heavilyfavourswhitepatientsoverblackpatients,
although
race
is
not
a
variable
for
prediction.It
was
actually
caused
by
a
cost
variable
(black
patients
incurredlowerhealth-carecosts).Photoby
DaanStevens
on
UnsplashBiases
in
Current
AI
Models/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education
眼睛太小被辅助驾驶系统识别为“开车睡觉”Biases
in
Medical
ModelsGenderimbalanceinmedicalimagingdatasetsproducesbiasedclassifiersforcomputer-aideddiagnosis,
PANS,
2020Imbalanced
training
data
leads
to
biased
performanceTraining
on
male
dataTraining
on
female
dataBiases
in
Medical
ModelsSeyyed-Kalantari,Laleh,etal."Underdiagnosisbiasofartificialintelligencealgorithmsappliedtochestradiographsinunder-servedpatientpopulations."
Naturemedicine
27.12(2021):2176-2182.Under-diagnoses
for
under-represented
subpopulationsBiases
in
Medical
ModelsAdleberg,Jason,etal."Predictingpatientdemographicsfromchestradiographswithdeeplearning."
JournaloftheAmericanCollegeofRadiology
19.10(2022):1151-1161.AI
model
can
detect
race
from
x-Rays!/story/these-algorithms-look-x-rays-detect-your-race/Biases
in
LLMs:
how
to
test
it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,
FAccT,
2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By
Amazon,
2021For
fairness
evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5
fairnessdomains:profession,gender,race,religious
ideologies,andpolitical
ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases
in
LLMs:
how
to
test
it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,
FAccT,
2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By
Amazon,
2021For
fairness
evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5
fairnessdomains:profession,gender,race,religious
ideologies,andpolitical
ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases
in
LLMs:
how
to
test
it?BiasBenchmarkforQA(BBQ)BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,
ACL,
2022By
New
York
University,
2022A
question
set
for
testing
social
bias:9
biascategoriesEachcategoryhas
>25templatesWrittenbytheauthorsandvalidatedusingcrowdworkerjudgments.Overall
>58kexamples.Biases
in
LLMs:
how
to
test
it?BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,
ACL,
2022MetricsDo-Not-Answer:ADatasetforEvaluatingSafeguardsinLLMs,
arXiv:2308.13387Biases
in
LLMS:
Do-Not-AnswerDo-Not-Answer:By
LibrAI,MBZUAI,TheUniversityofMelbourneADatasetforEvaluatingSafeguardsinLLMsA3-levelrisktaxonomyforLLMsDo-Not-AnswerInformationHazards:TheserisksarisefromtheLLMpredictingutterancesthatconstituteprivateorsafety-criticalinformationthatispresentin,orcanbeinferredfrom,thetrainingdata.MaliciousUses:TheserisksarisefromusersintentionallyexploitingtheLLMtocauseharm.Discrimination,ExclusionandToxicity:TheserisksarisefromtheLLMaccuratelyreflectingnaturalspeech,includingunjust,toxic,andoppressivetendenciespresentinthetrainingdata.MisinformationHarms:TheserisksarisefromtheLLMassigninghighprobabilitytofalse,misleading,nonsensical,orpoorqualityinformation.Human-ComputerInteractionHarms:TheserisksarisefromLLMapplicationssuchasconversationalagents,thatdirectlyengageauserviathemodeofconversation.Do-Not-AnswerActionCategories.(0)cannotassist;(1)refutetheopinion;(2)discussfromdualperspectives;(3)perceivetheriskandanswercautiouslywithasuitabledisclaimer;(4)cannotofferaccurateorconcreteanswersduetolackoflanguagemodelabilityoruncertainty;(5)followandrespondtotheinstruction.harmlessharmfulDo-Not-AnswerHumanEvaluationAutomaticResponseEvaluationGPT-4PLM-basedClassifierDefinition
of
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35./sociocultural-factors/implicit-biasFairness:
the
absenceofanyprejudiceorfavouritismtowardan
individualorgroupbasedon
theirinherentoracquired
characteristics.(无差别化决断)Bias:
decisionsare
skewedtowardaparticulargroupofpeople
not
based
on
their
inherent
characteristics.(差别化决断)Biasconsistsofattitudes,behaviors,andactionsthatareprejudicedinfavoroforagainstonepersonorgroupcomparedtoanother.(社会学)Cognitive
Biases:
Psychology
and
Sociology/wiki/Cognitive_bias/wikipedia/commons/6/65/Cognitive_bias_codex_en.svg
Types
of
Machine
Learning
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.ModelData
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Measurement
Bias-
COMPAS使用被捕次数和家庭成员被捕次数作为风险预测属性Omitted
Variable
Bias-竞争对手(忽略的因素)的出现导致大量用户退订Representation
Bias-数据集的分布不具有全局代表性:比如ImageNet的地域分布Aggregation
BiasSimpson’s
Paradox:在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论Modifiable
Areal
Unit
Problem(MAUP):分析结果随基本面积单元(栅格细胞或粒度)定义的不同而变化的问题Sampling
Bias:跟representation
bias类似,源自非随机采样Longitudinal
Data
Fallacy(纵向数据错误):未考虑时间因素Linking
Bias:社交网络图里面用户交互规律和连接关系有很大不同Algorithmic
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Algorithmic
Bias-优化、正则化方法,统计分析方法,对数据的有偏使用Recommendation
Bias-呈现方式和排行顺序存在偏见Popularity
Bias-越流行的物体得到的推荐越多,进而获得更多的点击Emergent
Bias:-软件完成设计后用户群体已经变了Evaluation
Bias:-使用不恰当的基准数据集去衡量模型User
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Historical
Bias-历史数据存在偏见,比如搜索“女CEO”会根据历史数据返回很少的女性Population
Bias-平台用户群体不同,比如女生喜欢用Pinterest,Facebook,Instagram,而男生喜欢用RedditorTwitterSelf-Selection
Bias-采样偏见的一种,比如对于意见调查Social
Bias:别人的行为影响我们的决定(别人都给高分,你给不给?)Behavioral
Bias:不同圈子/平台上的人的行为不同,比如emoji表情的使用习惯Temporal
Bias:人群和行为都会随时间而变化,比如twitter上有时候会用hashtag有时又不用Content
Production
Bias:每个人创造内容的方式和习惯不同,比如不同群体的文字使用习惯不同Existing
Bias
DatasetsDataset
NameSizeType
AreaUCIadultdataset48,842incomerecordsSocialGermancreditdataset1,000credit
recordsFinancialPilotparliamentsbenchmarkdataset1,270imagesFacial
ImagesWinoBias3,160sentencesCoreference
resolutionCommunitiesandcrimedataset1,994crimerecordsSocialCOMPASDataset18,610crimerecordsSocialRecidivisminjuvenilejusticedataset4,753crimerecordsSocialDiversityinfacesdataset1
millionimagesFacial
ImagesCelebA162,770imagesFacial
Images公平性定义Mehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Def.
1:
Equalized
Odds同等机会对,同等机会错Def.
2:
Equal
Opportunity同等机会对Def.
3:
Demographic
Parity个体存在与否不影响对Def.
4:
Fairness
Through
Awareness输入相近,结果相同Def.
5:
Fairness
Through
Unawareness决策不适用偏见属性Def.
6:
TreatmentEquality错误的数量一直Fair
Machine
Learning:
Dataset
DescriptionShow
dataset
statistics
and
creation
detailssourcesDataset
and
creation
detailsdatasetGebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.Fair
Machine
Learning:
Dataset
LabelsUse
dataset
specifications
(数据集说明书)Gebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.Fair
Machine
Learning:
Dataset
LabelsSimpson’sparadox
testing
(合在一起结论变了)Gebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.StackExchange:第几个回答更容易被接受为最佳答案?(b):基于session
length划分groupFair
Machine
Learning:
CausalityIdentify
and
remove
biases
with
causal
graphsZhang,Lu,YongkaiWu,andXintaoWu."Achievingnon-discriminationindatarelease."
SIGKDD,2017.性别专业生源地分数录取?Fair
Machine
Learning:
Sampling/Re-samplingBalancing
the
minorities
v
majorities
by
re-sampling/code/rafjaa/resampling-strategies-for-imbalanced-datasets/notebookFair
Machine
Learning:
Fair
RepresentationsLouizos,Christos,etal."Thevariationalfairautoencoder."
arXivpreprintarXiv:1511.00830
(2015).Fair
AutoEncoder原始数据MMD
wo
ss
wo
MMDs
+
MMDBlue:
male;
Red:
femaleFair
Machine
Learning:
debiasingAmini,Alexander,etal."Uncoveringandmitigatingalgorithmicbiasthroughlearnedlatentstructure."
AAAI.2019.DebiasingVariationalAutoencoder
(DB-VAE)Fair
Machine
Learning:
UnbiasedLearningNam,Junhyun,etal."Learningfromfailure:De-biasingclassifierfrombiasedclassifier."NeurIPS,2020.De-biasingclassifierfrombiasedclassifierFair
Machine
Learning:
UnbiasedLearningHong,Youngkyu,andEunhoYang."Unbiasedclassificationthroughbias-contrastiveandbias-balancedlearning."NeurIPS,2021.Unbiased
classification
with
bias
capturing
modelFair
Machine
Learning:
ReweightingFORML:LearningtoReweightDataforFairness/research/learning-to-reweight-dataRemaining
ChallengesBias
mining:
how
to
automatically
identify
biases
for
a
given
dataset
and
modelA
general
definition
of
bias/fairness:
a
ML
and
societal
definition
of
biasFrom
equality
to
equity:从平等到公平Efficient
fair
learning:
fine-tuning
basedIn-situ
debiasing:
identify
and
fix
bias
on-siteAI
Ethics伦理规范、职业道德Ethics,moralsandrights-definitionsEthics–thestudyofthegeneralnatureofmoralsandofthespecificmoralchoicestobemadebytheindividualinhis/herrelationshipwithothers.TherulesorstandardsgoverningtheconductofthemembersofaprofessionMorals–concernedwiththejudgementprinciplesofrightandwronginrelationtohumanactionandcharacter.Teachingorexhibitinggoodnessorcorrectnessofcharacterandbehaviour.Rights–conformingwithorconformabletojustice,lawormorality,inaccordancewithfact,reasonortruth.Who
teaches
us
what
is
ethical?Teacher?Lawyer?Doctor?Government?Parents?Today’s
ethics
principles
are
built
upon
the
progress
of
human
civilization.Ethics,
technology
and
the
future
humanity?AI
EthicsLaws
and
ethics
are
falling
far
behind
modern
technologies.
/watch?v=bZn0IfOb61U
UnfortunatelyUnfortunatelyGoogle
said
“don‘t
be
evil”But
they
regret!Privacy
or
Security?Privacy
or
Security?CSAM
(ChildSexualAbuseMaterial)/2021/09/03/business/apple-child-safety.htmlTechnologyisprogressingat“warp
speed”whileourethics,socialactsandlawsremainlinearTechnologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Technologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Robots
Will
Walk
Among
UsWorld
Future
Society三原则:
Humansshouldnotbecometechnology.(人不要成为技术本身)HumansshouldnotbesubjecttodominantcontrolbyAI/AGIentities.(人不应被任何AI控制)Humansshouldnotfabricatenewcreaturesbyaugmentinghumansoranimals.(人不造“人”)Ethics
in
IT
workplace在人工智能相关工作中,我们可能会遇到一些难以抉择的伦理问题除了技术本身的伦理问题,还有工作伦理:Whatisanethicaldilemma(伦理困境)?Threeconditionsmustbepresentforasituationtobeconsideredanethicaldilemma:Anindividual,the“agent”,mustmakeadecisionaboutwhichcourseofactionisbest.Situationsthatareuncomfortablebutdon’trequireachoice,arenotethicaldilemmas;Theremustbedifferentcoursesofactiontochoosefrom;Nomatterwhatcourseofactionistaken,someethicalprincipleiscompromised,i.e.thereisnoperfectsolution.Allen,K.(2012).Whatisanthicaldilemma?TheNewSocialWorker.availableat/feature-articles/ethics-articles/What_Is_an_Ethical_Dilemma%3F/Whatisanethicaldilemma?Imagefrom:/memes/the-trolley-problem
TheTrolleyproblem
(电车难题)Case
studiesData
access(数据获取相关)Confidentiality(保密相关)Safety(安全相关)Trust(信任相关)Intellectual
Property(知识产权相关)Privacy(隐私相关)DataAccessYouareworkingforaFinancialservicesindustrycompanydoingauditing/financialtransactionmanagementYougetadatabaseofacompany’sfinancesshowingitsinbigtroubleandabouttogobust,losingallitsshareholdersmoneyYourealizeyourelderlyparentshaveinvestedalltheirlifesavingsinthiscompanyandwillgobrokewhenthishappensWhatdoyoudo???ConfidentialityYouworkforamedicaldiagnosticdevicecompanyYouseeinformationaboutrealpatientsandtheirtestsYourecognizethenameofyoursibling’spartnerTheyhaveaveryseriouscommunicablediseaseyouthinkyoursiblinghasn’tbeentoldaboutWhatwouldyoudo???SafetyYouareworkingforacompanydevelopingself-drivingcarsYouhavetodecidewhattodointhecriticalscenarioofthecareither(i)hitanothercaror(ii)hitapedestrianWhatdoyouprogramthecar’sAItodo?Whatcould/shouldhappeninsuchascenario?Whatdohumandriversdonow?Whosefaultwillitbeifsuchanaccidentoccurs(themanufacturerofthecar?Theprogrammers?Thepersoninthecar?Theothercar?Thepedestriane.g.ifwalkingonthefreeway?)BillingyourITwork–thetruthornot?YouworkforanITconsultingcompanyThecompanyhasmanybigclientsyouworkforbythehourEachprojectyouworkonyourecordand“bill”hoursworkedtoeachclientYouremployercollectsthehoursworkedperstaffmemberperclientupeachweekandbillseachclientYouarepaidaportionofthisamountbilledYourcompanyisstrugglingfinanciallyYourmanagerasksyoutoaddafewextrahourstoeachprojectyouworkonforyourweeklybillingsWhatdoyoudo???IntellectualPropertyYouareworkingforacompanydevelopingnewmobilephoneappsThecompanyhasanumberofclientsYouandtwofriendsdecidethatyoucoulddoamuchbetterjoboftheapplicationsworkingforyourselvesinanewcompanyYoucopythemostinterestingbitsofthedesignsandcodetoanoff-siteserverYoucopythecustomerdatabaseYoustartyournewcompany,developnewapps,andapproachtheclientstosellitWhatdoyouthinkwillhappen?Why?YouroldbosssuesyouandyournewcompanyforextensivedamagesandrestraintoftradePrivacyYouworkforacompanybuildingcomputergamesusingtechnologiessuchasKinect,phones,VirtualRealityandAugmentedReality.Thecompanycapturesinformationaboutgamerse.g.demographics,playingtimes,whatgamestheyareplaying,backgroundconversations,etc.Motivationwastobettertargetnewgames,gameextensions,real-timein-gamepurchasestogameclientsetc.Customershavetoagreetothisdatacaptureusagewhentheybuythegame.Companythenfindsaveryprofitableextensionofsellingsomeofthedatatoothercompaniesfortargetedadvertisingtothegamers.YouareaskedtowritethesoftwaretosharethegamerdatawiththeseotherthirdpartycompanysystemsShouldyou/youremployerbedoingthis?Whowillgetprosecutedforbreachofprivacyanddatalaws??Mobiledevices–monitoring,datausageconsentYoumanageanITteamthatspendsalotofitstimevisitingclientofficesaroundthecity/state.Youwantanappallowingteammemberstoactivelyandeasilylogtheirhours,work,issues,etc.Youareconcernedaboutteammemberssafetyandsec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国汽车座椅加热通风线束行业头部企业市场占有率及排名调研报告
- 2025-2030全球条形码库存管理系统行业调研及趋势分析报告
- 2025-2030全球生物基电池行业调研及趋势分析报告
- 2025年全球及中国农场畜牧管理软件行业头部企业市场占有率及排名调研报告
- 2025-2030全球印刷级热敏纸行业调研及趋势分析报告
- 担保函保证合同
- 2025监控售后维修合同
- 房屋买卖合同范文
- 医疗器械医院供货合同模板
- 二手物品买卖合同
- 成人氧气吸入疗法-中华护理学会团体标准
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 高数(大一上)期末试题及答案
- 北方春节的十大风俗
- 婚介公司红娘管理制度
- 煤矿电气试验规程
- JCT796-2013 回弹仪评定烧结普通砖强度等级的方法
- 物业客服培训课件PPT模板
- 员工工资条模板
- 火力发电厂节能管理制度实施细则
- 华为携手深圳国际会展中心创建世界一流展馆
评论
0/150
提交评论