浙江温州第四中学2024年中考数学全真模拟试题含解析_第1页
浙江温州第四中学2024年中考数学全真模拟试题含解析_第2页
浙江温州第四中学2024年中考数学全真模拟试题含解析_第3页
浙江温州第四中学2024年中考数学全真模拟试题含解析_第4页
浙江温州第四中学2024年中考数学全真模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江温州第四中学2024年中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.52.“a是实数,”这一事件是()A.不可能事件 B.不确定事件 C.随机事件 D.必然事件3.计算(x-l)(x-2)的结果为()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+24.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B.C. D.5.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD6.二次函数y=﹣(x+2)2﹣1的图象的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣27.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+48.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.9.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A. B. C. D.10.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.分解因式:a2-2ab+b2-1=______.12.若am=5,an=6,则am+n=________.13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.14.若代数式有意义,则x的取值范围是__.15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.17.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.三、解答题(共7小题,满分69分)18.(10分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.19.(5分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(10分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.(1)求证:是的切线;(2)当,时,求的半径.22.(10分)已知a2+2a=9,求的值.23.(12分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.24.(14分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.2、D【解析】是实数,||一定大于等于0,是必然事件,故选D.3、B【解析】

根据多项式的乘法法则计算即可.【详解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.4、D【解析】

此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.5、D【解析】

∵∠ACD对的弧是,对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.6、D【解析】

根据二次函数顶点式的性质解答即可.【详解】∵y=﹣(x+2)2﹣1是顶点式,∴对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.7、D【解析】

∵函数的图象过点A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是.故选D.8、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C9、B【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】添加,根据AAS能证明≌,故A选项不符合题意.B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;C.添加,可得,根据AAS能证明≌,故C选项不符合题意;D.添加,可得,根据AAS能证明≌,故D选项不符合题意,故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正确,不符合题意;B、在Rt△ABC中,sinα=,故B正确,不符合题意;C、在Rt△ACD中,sinα=,故C正确,不符合题意;D、在Rt△ACD中,cosα=,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题(共7小题,每小题3分,满分21分)11、(a-b+1)(a-b-1)【解析】

当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.12、1.【解析】

根据同底数幂乘法性质am·an=am+n,即可解题.【详解】解:am+n=am·an=5×6=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.13、5.【解析】

试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.14、x3【解析】

由代数式有意义,得

x-30,

解得x3,

故答案为:x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.15、57°.【解析】

根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.16、【解析】分析:根据勾股定理,可得,根据平行四边形的性质,可得答案.详解:由勾股定理得:=,即(0,4).矩形ABCD的边AB在x轴上,∴四边形是平行四边形,A=B,=AB=4-(-3)=7,与的纵坐标相等,∴(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.17、50°【解析】

利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.三、解答题(共7小题,满分69分)18、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.19、(1)图②结论:AF=CD+CF.(2)图③结论:AF=CD+CF.【解析】试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;(2)延长交的延长线于点由全等三角形的对应边相等验证关系.试题解析:(1)图②结论:证明:作,的延长线交于点.∵四边形是矩形,由是中点,可证≌(2)图③结论:延长交的延长线于点如图所示因为四边形是平行四边形所以//且,因为为的中点,所以也是的中点,所以又因为所以又因为所以≌所以因为20、(1)4元或6元;(2)九折.【解析】

解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+×20)=2240,化简,得x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.答:该店应按原售价的九折出售.21、(1)见解析;(2)的半径是.【解析】

(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结.∵平分,∴,又,∴,∴,∵是边上的高线,∴,∴,∴是的切线.(2)∵,∴,,∴是中点,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.22、,.【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.23、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.24、(1)见解析;(2)见解析;(3)AB=1【解析】

(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.【详解】证明:(1)∵AB是⊙O的直径且AB⊥CD,∴∠CPB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论