2025届福建省三明市普通高中数学高一上期末联考试题含解析_第1页
2025届福建省三明市普通高中数学高一上期末联考试题含解析_第2页
2025届福建省三明市普通高中数学高一上期末联考试题含解析_第3页
2025届福建省三明市普通高中数学高一上期末联考试题含解析_第4页
2025届福建省三明市普通高中数学高一上期末联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省三明市普通高中数学高一上期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的一个区间是A. B.C. D.2.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知集合,,若,则的值为A.4 B.7C.9 D.104.的值为()A. B.1C. D.25.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC6.已知函数,则()A. B.C. D.17.在空间直角坐标系中,点关于面对称的点的坐标是A. B.C. D.8.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则9.若,且,则()A. B.C. D.10.函数零点所在的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______12.若命题,,则的否定为___________.13.若幂函数图像过点,则此函数的解析式是________.14.不等式对于任意的x,y∈R恒成立,则实数k的取值范围为________15.已知奇函数满足,,若当时,,则______16.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(且)的图像过点.(1)求a的值;(2)求不等式的解集.18.已知以点为圆心的圆过点和,线段的垂直平分线交圆于点、,且,(1)求直线的方程;(2)求圆的方程(3)设点在圆上,试探究使的面积为8的点共有几个?证明你的结论19.素有“天府之国”美称的四川省成都市,属于亚热带季风性湿润气候.据成都市气象局多年的统计资料显示,成都市从1月份到12月份的平均温(℃)与月份数(月)近似满足函数,从1月份到7月份的月平均气温的散点图如下图所示,且1月份和7月份的平均气温分别为成都全年的最低和最高的月平均气温.(1)求月平均气温(℃)与月份数(月)的函数解析式;(2)推算出成都全年月平均气温低于但又不低于的是哪些月份.20.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.21.某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)数据如下表:时间51125种植成本1510.815(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.3、A【解析】可知,或,所以.故选A考点:交集的应用4、B【解析】根据正切的差角公式逆用可得答案【详解】,故选:B5、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理6、D【解析】由分段函数定义计算【详解】,所以故选:D7、C【解析】关于面对称的点为8、C【解析】利用特殊值判断A、B、D,根据不等式的性质证明C;【详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C9、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D10、D【解析】题目中函数较为简单,可以直接求得对应的零点,从而判断所在区间即可【详解】当时,令,即,所以;当时,令,即,,不在定义域区间内,舍所以函数零点所在的区间为故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:112、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.13、【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.【详解】设幂函数的解析式为,由于函数图象过点,故有,解得,所以该函数的解析式是,故答案为:.【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.14、【解析】根据给定条件将命题转化为关于x的一元二次不等式恒成立,再利用关于y的不等式恒成立即可计算作答.【详解】因为对于任意的x,y∈R恒成立,于是得关于x的一元二次不等式对于任意的x,y∈R恒成立,因此,对于任意的y∈R恒成立,故有,解得,所以实数k的取值范围为.故答案为:15、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:16、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)代入点坐标计算即可;(2)根据定义域和单调性即可获解【小问1详解】依题意有∴.【小问2详解】易知函数在上单调递增,又,∴解得.∴不等式的解集为.18、(1);(2)或;(3)2【解析】(1)根据直线是线段的垂直平分线的方程,求出线段中点坐标和直线的斜率,即可解直线的方程;(2)作图,利用圆的几何性质即可;(3)用面积公式可以推出点Q到直线AB的距离,从而判断出Q的个数.【详解】由题意作图如下:(1)∵,的中点坐标为∴直线的方程为:即;(2)设圆心,则由在上得……①又直径为,∴∴……②①代入②消去得,解得或,当时,当时∴圆心或,∴圆的方程为:或;(3)∵∴当面积为8时,点到直线的距离为又圆心到直线的距离为,圆的半径,且∴圆上共有两个点,使的面积为8;故答案为:,或,2.19、(1).(2)3月、4月、9月、10月【解析】(1)利用五点法求出函数解析式;(2)解不等式可得结论【详解】(1)由题意,,,,又,而,∴∴(2)由,解得或或,又,∴3,4,9,10∴全年月平均气温低于但又不低于的是3月、4月、9月、10月【点睛】方法点睛:本题三角函数应用,解题关键是根据已知函数模型求出函数解析式,掌握五点法是解题基础,然后根据函数解析式列式(方程或不等式)计算求解20、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题21、(1);(2)该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【解析】(1)先作出散点图,根据散点图的分布即可判断只有模型符合,然后将数据代入建立方程组,求出参数.(2)由于模型为二次函数,结合定义域,利用配方法即可求出最低种植成本以及对应得上市时间.【详解】解:(1)以上市时间(单位:10天)为横坐标,以种植成本(单位/)为纵坐标,画出散点图(如图).根据点的分布特征,,,这三个函数模型与表格所提供的数据不吻合,只有函数模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论