版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省大理州南涧县民族中学2025届高一上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,则A. B.C. D.2.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.3.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或4.若,且,则的值是A. B.C. D.5.函数的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)6.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定7.若角,均为锐角,,,则()A. B.C. D.8.用函数表示函数和中的较大者,记为:,若,,则的大致图像为()A. B.C. D.9.函数的图象如图所示,则函数的零点为()A. B.C. D.10.函数的定义域为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.12.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.13.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.14.在中,,则_____________15.已知点角终边上一点,且,则______16.已知函数,若有解,则m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)18.已知定义域为的函数是奇函数.(1)求实数a的值;(2)若不等式在有解,求实数m取值范围.19.2019年是中华人民共和国成立70周年,70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中国人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就,为此,某市举行了“辉煌70年”摄影展和征文比赛,计划将两类获奖作品分别制作成纪念画册和纪念书刊,某公司接到制作300本画册和900本书刊的订单,已知该公司有50位工人,每位工人在1小时内可以制作完3本画册或5本书刊,现将全部工人分为两组,一组制作画册,另一组制作书刊,并同时开始工作,设制作画册的工人有x位,制作完画册所需时间为(小时),制作完书刊所需时间为(小时).(1)试比较与的大小,并写出完成订单所需时间(小时)的表达式;(2)如何分组才能使完成订单所需的时间最短?20.如图,边长为的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.(1)求四棱锥的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.21.如图,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,求此几何体的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由集合,根据补集和并集定义即可求解.【详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题.2、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.3、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C4、A【解析】由,则,考点:同角间基本关系式5、B【解析】先求得函数的单调性,利用函数零点存在性定理,即可得解.【详解】解:因为函数均为上的单调递减函数,所以函数在上单调递减,因为,,所以函数的零点所在的区间是.故选:B6、C【解析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C.由折线图可看出乙的波动比甲大,所以甲更稳定.故选C7、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B8、A【解析】利用特殊值确定正确选项.【详解】依题意,,排除CD选项.,排除B选项.所以A选项正确.故选:A9、B【解析】根据函数的图象和零点的定义,即可得出答案.【详解】解:根据函数的图象,可知与轴的交点为,所以函数的零点为2.故选:B.10、C【解析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.12、【解析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:13、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点14、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题15、【解析】利用任意角的三角函数的定义,即可求得m值【详解】点角终边上一点,,则,故答案为【点睛】本题考查任意角的三角函数的定义,属于基础题16、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)13分钟【解析】(1)按照题目所给定的坐标系分别写出和的方程即可;(2)根据零点存在定理判断即可.【小问1详解】可设,∵转动的周期为30分钟,∴,∵枢轮的直径为3.4米,∴,∵点P的初始位置为最高点,∴,∴,∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为,∵水位以每分钟0.017米速度下降,∴;【小问2详解】P点进入水中,则,即∴作出和的大致图像,显然在内存在一个交点令,∵,,∴P点进入水中所用时间的最小值为13分钟;综上,,,P点进入水中所用时间的最小值为13分钟.18、(1);(2).【解析】(1)函数是上的奇函数,利用,注意检验求出的是否满足题意;(2)由(1)得,把不等式在有解转化为在有解,构造函数,利用基本不等式求解即可.【详解】(1)由为上的奇函数,所以,则,检验如下:当,,,则函数为上的奇函数.所以实数a的值.(2)由(1)知,则,由得:,因为,等价于在有解,则,令,设,当且仅当或(舍)取等号;则,所以实数m取值范围.【点睛】关键点睛:把不等式在有解转化为在有解,构造函数出是解决本题的关键.19、(1)当时,;当时,;;(2)安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.【解析】(1)由题意得,,利用作差法可比较出与的大小,然后可得的表达式;(2)利用反比例函数的知识求出的最小值即可.【详解】(1)由题意得,,所以,.所以当时,;当时,,所以完成订单所需时间.(2)当时,为减函数,此时;当时,为增函数,此时.因为,所以当时,取得最小值.所以安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.20、(1);(2)证明见解析;(3)存在,为中点,证明见解析.【解析】(1)由等腰三角形三线合一性质和面面垂直性质定理可证得平面,由棱锥体积公式可求得结果;(2)连结交于点,由三角形中位线性质可证得,由线面平行判定定理可得到结论;(3)当为中点时,由正方形的性质、线面垂直的性质,结合线面垂直的判定可证得平面,由面面垂直的判定定理可证得结论.【详解】(1)为中点,为正三角形,.平面平面,平面平面,平面,平面.,,.(2)证明:连结交于点,连结.由四边形为正方形知点为的中点,又为的中点,,平面,平面,平面.(3)存在点,当为中点时,平面平面.证明如下:因为四边形是正方形,为的中点,,由(1)知:平面,平面,,又,平面.平面,平面平面.【点睛】关键点点睛:本题第三问考查了与面面垂直有关的存在性问题的处理,解题关键是能够根据平面确定只要在上,必有,由此只需找到与面中的另一条与相交的直线垂直即可,进而锁定的位置.21、96【解析】,取CM=AN=BD,连接DM,MN,DN,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.所以V几何体=V三棱柱+V四棱锥试题解析:如图,取CM=AN=BD,连接DM,MN,DN,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.所以V几何体=V三棱柱+V四棱锥.由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区医生培训
- 交通事故协商赔偿协议书3篇
- 神内科护理疑难病例
- 端午节音乐活动教案
- 河南科技大学《日语中级听力》2021-2022学年第一学期期末试卷
- 2024版工程建筑外架施工安全合同2篇
- 花家湖学校年度办公用品购货合同
- 2024年装载机买卖合同技术更新服务合同2篇
- 女方哺乳期2024年离婚协议书参考
- 《抗菌药物合理运用》课件
- 国投集团笔试测评题
- (高清版)DZT 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼
- 2023年凉山州木里藏族自治县考试招聘事业单位工作人员考试真题及答案
- 六西格玛项目定义
- 职业生涯规划主题班会1
- 【川教版】《生态 生命 安全》四年级上册第10课《认识传染病》课件
- DB35T 2061-2022 村庄规划编制规程
- 创新实践组织创新成功的案例分享
- 谈谈改革开放四十多年我的家乡的变化
- 2024年上海中考语文记叙文阅读专题一写人记事散文(原卷版 +解析版)
- 监理工作中变更管理的规范与应对措施
评论
0/150
提交评论