版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沭县2025届高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是定义在上的奇函数,且当时,,则()A. B.C. D.2.已知函数则()A.- B.2C.4 D.113.已知,,则在方向上的投影为()A. B.C. D.4.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.5.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值6.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.7.函数在区间上的图象可能是()A. B.C. D.8.的值为A. B.C. D.9.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.10.函数的部分图像如图所示,则的最小正周期为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,且,则a的取值范围是______12.函数的部分图象如图所示,则___________.13.已知tanα=3,则sin14.不等式的解集为___________.15.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.16.集合,用列举法可以表示为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.18.已知全集,集合,(1)当时,求;(2)如果,求实数的取值范围19.设是函数定义域内的一个子集,若存在,使得成立,则称是的一个“弱不动点”,也称在区间上存在“弱不动点”.设函数,(1)若,求函数的“弱不动点”;(2)若函数在上不存在“弱不动点”,求实数的取值范围20.设集合,,.(1)求,;(2)若,求;(3)若,求的取值范围.21.已知集合,(1)当时,求;(2)若,求a的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D2、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.3、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.4、D【解析】设,,,,在同一坐标系中作出函数的图象,可得答案.【详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D5、C【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.6、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).7、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C8、B【解析】.故选B.9、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.10、B【解析】由图可知,,计算即可.【详解】由图可知,,则,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:12、##【解析】函数的图象与性质,求出、与的值,再利用函数的周期性即可求出答案.【详解】解:由图象知,,∴,又由图象可得:,可求得,∴,∴,∴故答案为:.13、3【解析】由题意利用同角三角函数的基本关系,求得要求式子的值【详解】∵tanα=3,∴sinα•cosα=sin故答案为310【点睛】本题主要考查同角三角函数的基本关系,属于基础题14、【解析】根据对数函数的单调性解不等式即可.【详解】由题设,可得:,则,∴不等式解集为.故答案:.15、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题16、##【解析】根据集合元素属性特征进行求解即可.【详解】因为,所以,可得,因为,所以,集合故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【点睛】本题考查了求解二次函数解析式和已知复合函数单调区间求参数范围.掌握复合函数单调性同增异减是解题关键,考查了分析能力和计算能力,属于中等题.18、(1)或;(2)(-∞,2).【解析】先解出集合A(1)时,求出B,再求和;(2)把转化为,分和进行讨论.【详解】(1)当时,,∴∴或.(2)∵,∴.当时,有,解得:;当时,因为,只需,解得:;综上:,故实数的取值范围(-∞,2).【点睛】(1)集合的交并补运算:①离散型的数集用韦恩图;②连续型的数集用数轴;(2)由求参数的范围容易漏掉的情况19、(1)0(2)【解析】(1)解方程可得;(2)由方程在上无解,转化为求函数的取值范围,利用换元法求解取值范围,同时注意对数的真数大于0对参数范围有限制,从而可得结论【小问1详解】当时,,由题意得,即,即,得,即,所以函数的“弱不动点”为0【小问2详解】由已知在上无解,即在上无解,令,得在上无解,即在上无解记,则在上单调递减,故,所以,或又在上恒成立,故在上恒成立,即在上恒成立,记,则在上单调递减,故,所以,综上,实数的取值范围是20、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集运算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式组求出的范围即可.【详解】(1)由已知得,所以,;(2)由(1)得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版二手挖掘机设备买卖合同
- 二零二四年度在建工程销售合同3篇
- 2024围棋培训教练聘用合同模板
- 二零二四年度生态环境治理与保护服务合同2篇
- 2024年度旅游服务合同的旅游路线与服务标准3篇
- 2024员工劳动合同协议书范文
- 2024年度框架合同:跨国公司全球广告代理框架3篇
- 全新企业2024年度市场推广合同
- 2024全新餐饮业厨师聘用合同下载版
- 二零二四年度版权购买合同购买价格2篇
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
- 钻井作业指导书
- 供应链管理:高成本、高库存、重资产的解决方案 第2版
- 产时子痫应急演练文档
- CRPS电源设计向导 CRPS Design Guide r-2017
- 销售罗盘精髓-课件
- 2023年上海国际集团有限公司校园招聘笔试题库及答案解析
- 外贸委托付款协议书模板(中英文版)
- 民用建筑电线电缆防火设计规范
评论
0/150
提交评论