版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届鸡西市重点中学数学高二上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.3.执行如图所示的算法框图,则输出的结果是()A. B.C. D.4.设函数的图象在点处的切线为,则与坐标轴围成的三角形面积的最小值为()A. B.C. D.5.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或26.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.7.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.8.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;9.双曲线的焦点坐标为()A. B.C. D.10.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条11.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.12.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆交轴于A,两点,点是椭圆上异于A,的任意一点,直线,分别交轴于点,,则为定值.现将双曲线与椭圆类比得到一个真命题:若双曲线交轴于A,两点,点是双曲线上异于A,的任意一点,直线,分别交轴于点,,则为定值___14.已知函数,则________15.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为_________16.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.(12分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.19.(12分)在平面直角坐标系xOy中,椭圆C1:的左、右焦点分别为,且椭圆C1与抛物线C2:y2=2px(p>0)在第一象限的交点为Q,已知.(1)求的面积(2)求抛物线C2的标准方程.20.(12分)如图,在四棱锥中,底面为菱形,,底面,,是的中点.(1)求证:平面;(2)求证:平面平面;(3)设点是平面上任意一点,直接写出线段长度最小值.(不需证明)21.(12分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.22.(10分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.2、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D3、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.4、C【解析】利用导数的几何意义求得切线为,求x、y轴上截距,进而可得与坐标轴围成的三角形面积,利用导数研究在上的最值即可得结果.【详解】由题设,,则,又,所以切线为,当时,当时,又,所以与坐标轴围成的三角形面积为,则,当时,当时,所以在上递减,在上递增,即.故选:C5、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:6、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.7、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C8、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.9、C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.10、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.11、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D12、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、-【解析】由双曲线的方程可得,的坐标,设的坐标,代入双曲线的方程可得的横纵坐标的关系,求出直线,的方程,令,分别求出,的纵坐标,求出的表达式,整理可得为定值【详解】由双曲线的方程可得,,设,则,可得,直线的方程为:,令,则,可得,直线的方程为,令,可得,即,∴,,,故答案为:-另解:双曲线方程化为,只是将的替换为-,故答案也是只需将中的替换为-即可.故答案为:-.14、.【解析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.15、##【解析】根据给定条件探求出椭圆长轴长与其焦距的关系即可计算作答.【详解】设椭圆长轴长为,焦距为,即,依题意,,而直线是圆的切线,即,则有,又点在椭圆上,即,因此,,从而有,所以椭圆的离心率为.故答案为:16、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1)圆心的坐标为,半径;(2)【解析】(1)利用配方法化圆的一般方程为标准方程,可得圆心坐标与半径;(2)由两点间的距离公式求得,得到与,则的取值范围可求【小问1详解】解:由,得,圆心的坐标为,半径;【小问2详解】解:,,,,的取值范围是19、(1)(2)【解析】(1)设,由椭圆的定义可得,结合余弦定理可得出的值,从而可得面积.(2)设,根据的面积结合椭圆的方程求出点的坐标,代入抛物线可得答案.【小问1详解】由椭圆方程知a=2,b=1,,设,则即,求得所以的面积为【小问2详解】设由(1)中,得又,,所以代入抛物线方程得,所以所以抛物线的标准方程为20、(1)证明见解析(2)证明见解析(3)【解析】(1)设,连结,根据中位线定理即可证,再根据线面平行的判定定理,即可证明结果;(2)由菱形的性质可知,可证,又底面,可得,再根据面面垂直的判定定理,即可证明结果;(3)根据等体积法,即,经过计算直接写出结果即可.【小问1详解】证明:设,连结.因为底面为菱形,所以为的中点,又因为E是PC的中点,所以.又因为平面,平面,所以平面.【小问2详解】证明:因为底面为菱形,所以.因为底面,所以.又因为,所以平面.又因为平面,所以平面平面.【小问3详解】解:线段长度的最小值为.21、(1);(2).【解析】(1)先利用数量积和余弦值得到,再利用面积公式计算即得结果;(2)根据等差数列得到,再结合余弦定理进行运算得到关于b的关系,求值即可.【详解】(1)由得,所以,所以,所以,所以;(2)因为a、b、c成等差数列,所以,由余弦定理得,即,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版企业总经理聘用协议
- 2025年进口热带水果专供协议书3篇
- 2025年度纤维原料加工合作合同模板3篇
- 2025年度船舶抵押贷款服务协议范本3篇
- 2025版二零二五年度消防设备租赁合同3篇
- 现代科技下的中医家庭健康服务
- 教育与科技创新的未来路径
- 电力行业从业人员安全用电培训教程
- 二零二五年度创新型民间车辆抵押贷款合同范本4篇
- 基于2025年度计划的研发合作与专利权共享协议3篇
- 【高空抛物侵权责任规定存在的问题及优化建议7100字(论文)】
- 二年级数学上册100道口算题大全 (每日一套共26套)
- 物流无人机垂直起降场选址与建设规范
- 肺炎临床路径
- 外科手术铺巾顺序
- 创新者的窘境读书课件
- 如何克服高中生的社交恐惧症
- 聚焦任务的学习设计作业改革新视角
- 移动商务内容运营(吴洪贵)任务三 APP的品牌建立与价值提供
- 电子竞技范文10篇
- 食堂服务质量控制方案与保障措施
评论
0/150
提交评论