版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市七里河区兰州五十五中2025届数学高二上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.2.已知向量,,且,则实数等于()A.1 B.2C. D.3.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.44.已知数列满足,且,则的值为()A.3 B.C. D.5.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件6.若展开式的二项式系数之和为,则展开式的常数项为()A. B.C. D.7.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对8.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件9.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.10.椭圆的长轴长是()A.3 B.4C.6 D.811.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3C.6 D.12.已知数列中,,,是的前n项和,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆上的点到直线的距离的最大值为__________.14.若关于的不等式恒成立,则实数的取值范围是______.15.椭圆的焦距为______.16.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个长方体形状的包装盒,、在上是被切去的等腰直角三角形斜边的两个端点,设(1)求包装盒的容积关于的函数表达式,并求出函数的定义域;(2)当为多少时,包装盒的容积最大?最大容积是多少?18.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值19.(12分)如图,在四棱锥中,底面ABCD是边长为2的正方形,为正三角形,且侧面底面ABCD,(1)求证:平面ACM;(2)求平面MBC与平面DBC的夹角的大小20.(12分)已知函数在处取得极值(1)求实数a的值;(2)若函数在内有零点,求实数b的取值范围21.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.22.(10分)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于游牧生活.其结构如图所示,上部分是侧棱长为3的正六棱锥,下部分是高为1的正六棱柱,分别为正六棱柱上底面与下底面的中心.(1)若长为,把蒙古包的体积表示为的函数;(2)求蒙古包体积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.2、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C3、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.4、B【解析】根据题意,依次求出,观察规律,进而求出数列的周期,然后通过周期性求得答案.【详解】因为数列满足,,所以,所以,,,可知数列具有周期性,周期为3,,所以.故选:B5、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.6、C【解析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得结果即可.【详解】解:因为展开式的二项式系数之和为,则,所以,令,求得,所以展开式的常数项为.故选:C.7、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.8、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.9、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A10、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.11、C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力12、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得圆心到直线的距离,结合圆上的点到直线的距离的最大值为,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,所以圆上的点到直线的距离的最大值为.故答案为:14、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.15、【解析】由求出即可.【详解】可化为,设焦距为,则,则焦距故答案为:16、【解析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以,,即四边形面积等于.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),定义域为;(2)当时,包装盒的容积最大是.【解析】(1)设出包装盒的高和底面边长,利用长方体的表面积得到等量关系,再利用长方体的体积公式求出表达式,再利用实际意义得到函数的定义域;(2)求导,利用导函数的符号变化得到函数的极值,即最值.小问1详解】解:设包装盒的高为,底面边长为,则,,所以=其定义域为;【小问2详解】解:由(1)得:,,因为,所以当时,;当时,;所以当时,取得极大值,即当时,包装盒的容积最大是18、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得19、(1)证明见解析(2)30°【解析】(1)连接BD,借助三角形中位线可证;(2)建立空间直角坐标系,利用向量法直接可求.【小问1详解】连接BD,与AC交于点O,在中,因为O,M分别为BD,PD的中点,则,又平面ACM,平面ACM,所以平面ACM.【小问2详解】设E是AB的中点,连接PE,因为为正三角形,则,又因为平面底面ABCD,平面平面,则平面ABCD,过点E作EF平行于CB,与CD交于点F,以E为坐标原点,建立空间直角坐标系如图所示,则,,,,,,所以,,设平面CBM的法向量为,则,令,则,因为平面ABCD,则平面ABCD的一个法向量为,所以,所以平面MBC与平面DBC所成角大小为30°20、(1);(2)【解析】(1)由题意可得,从而可求出a的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数在内有零点,只要函数在内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)在处取得极值,∴,∴.经验证时,在处取得极值(2)由(1)知,∴极值点为2,.将x,,在内的取值列表如下:x024/-0+/b极小值由此可得,在内有零点,只需∴21、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 千岛湖东南旅游码头配套项目技术标
- 议论文作文课件
- 2024年度股权投资合同:某创业公司A轮融资2篇
- 虞美人教学课件
- 《铁路货物运输》课件
- 《肺癌病人的护理》课件
- 2024中国移动政企客户分公司暑期实习生校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国石化海洋石油工程公司毕业生招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国正大甘肃区校园招聘70人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国大唐集团资本控股限公司招聘16人易考易错模拟试题(共500题)试卷后附参考答案
- 护理 鱼骨图模板
- 线切割工试题答案库
- 外观检验判定标准
- 插装阀基本工作原理(课堂PPT)
- 二年级群文阅读教学设计
- 阅读理解--新闻报道类
- 人的一生都在不停的修行之中
- 特种设备质量管理制度
- 渔业船舶检验管理规定
- 公租房住房证明(共1页)
- 第九章2节共价键理论
评论
0/150
提交评论